Centrosomes were microsurgically removed from BSC-1 African green monkey kidney cells before the completion of S phase. Karyoplasts (acentrosomal cells) entered and completed mitosis. However, postmitotic karyoplasts arrested before S phase, whereas adjacent control cells divided repeatedly. Postmitotic karyoplasts assembled a microtubule-organizing center containing gamma-tubulin and pericentrin, but did not regenerate centrioles. These observations reveal the existence of an activity associated with core centrosomal structures-distinct from elements of the microtubule-organizing center-that is required for the somatic cell cycle to progress through G1 into S phase. Once the cell is in S phase, these core structures are not needed for the G2-M phase transition.
Balkan endemic nephropathy is a chronic tubulointerstitial disease frequently accompanied by urothelial cell carcinomas of the upper urinary tract. This disorder has recently been linked to exposure to aristolochic acid, a powerful nephrotoxin and human carcinogen. Following metabolic activation, aristolochic acid reacts with genomic DNA to form aristolactam-DNA adducts that generate a unique TP53 mutational spectrum in urothelium. The aristolactam-DNA adducts are concentrated in the renal cortex, thus serving as biomarkers of internal exposure to aristolochic acid. Here, we present molecular epidemiologic evidence relating carcinomas of the upper urinary tract to dietary exposure to aristolochic acid. DNA was extracted from the renal cortex and urothelial tumor tissue of 67 patients that underwent nephroureterectomy for carcinomas of the upper urinary tract and resided in regions of known endemic nephropathy. Ten patients from non-endemic regions with carcinomas of the upper urinary tract served as controls. Aristolactam-DNA adducts were quantified by 32P-post-labeling, the adduct was confirmed by mass spectroscopy, and TP53 mutations in tumor tissues were identified by chip-sequencing. Adducts were present in 70% of the endemic cohort and in 94% of patients with specific A:T to T:A mutations in TP53. In contrast, neither aristolactam-DNA adducts nor specific mutations were detected in tissues of patients residing in non-endemic regions. Thus, in genetically susceptible individuals, dietary exposure to aristolochic acid is causally related to endemic nephropathy and carcinomas of the upper urinary tract.
Formaldehyde inhalation at 6 ppm and above causes nasal squamous cell carcinoma (SCC) in F344 rats. The human health implications of this effect are of significant interest since human exposure to environmental formaldehyde is widespread, though at lower concentrations than those that cause cancer in rats. In this article, which is part of a larger effort to predict the human cancer risks of inhaled formaldehyde, we describe biologically motivated quantitative modeling of the exposure-tumor response continuum in the rat. An anatomically realistic, three-dimensional fluid dynamics model of the F344 rat nasal airways was used to predict site-specific flux of formaldehyde from inhaled air into tissue, since both SCC and preneoplastic lesions develop in a characteristic site-specific pattern. Flux into tissue was used as a dose metric for two modes of action, direct mutagenicity and cytolethality-regenerative cellular proliferation (CRCP), which in turn were linked to key parameters of a two-stage clonal growth model. The direct mutagenicity mode of action was represented by a low dose linear dose-response model of DNA-protein cross-link (DPX) formation. An empirical J-shaped dose-response model and a threshold model fit to the empirical data were used for CRCP. In the clonal growth model, the probability of mutation per cell generation was a function of the tissue concentration of DPX while the rate of cell division was calculated from the CRCP data. Maximum likelihood methods were used to estimate parameter values. Survivor (a nontumor outcome) and tumor data for controls from the National Toxicology Program database and from two formaldehyde inhalation bioassays were used for likelihood calculations. The J-shaped dose-response for CRCP provided a better description of the SCC data than did the threshold model. Sensitivity analyses indicated that the rodent tumor response is due to the CRCP mode of action, with the directly mutagenic pathway having little, if any, influence. When evaluated in light of modeling and database uncertainties, particularly the specification of the clonal growth model and the dose-response data for CRCP, this work provides suggestive though not definitive evidence for a J-shaped dose-response for formaldehyde-mediated nasal SCC in the F344 rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.