Wyethia reticulata is an edaphic endemic in the Sierra Nevada foothills. Its sympatric congener, W. bolanderi, is also restricted to the foothills, but has a north-south range of 275 km, compared to 14 km for W. reticulata. The goals of this study were to determine clonal diversity, population size, genetic variation, and spatial and generic structure for each species from paired populations in El Dorado County, California, using allozyme and RAPD (random amplified polymorphic DNA) methodologies. Wyethia reticulata, spreading by rhizomes, had populations dominated by a few large individuals, while W. bolanderi, with a basal caudex, had populations of a few hundred evenly sized individuals. Genetic analyses indicated that W. reticulata, compared to its congener, had somewhat less genetic diversity (H(T): 0.28 vs. 0.38), had more of its genetic variation partitioned among populations (F(ST): 0.25 vs. 0.07), and showed a complete absence of inbreeding (F(IS): -0.03 vs. 0.22). Population membership in accord with populations defined by geographical location resulted only when all markers were included in the analysis. Ecological limits on recruitment of genets appears to result in small population size in W. reticulata. Limited gene flow, drift within small populations, and sexual reproductive dominance of large clones result in the genetic divergence of populations in this species, while genetic diversity is maintained by the longevity of clones and outbreeding.
Genetic variability among accessions of Russian thistle (Salsola tragus L.) from California was investigated using allozymes and DNA-based molecular markers. Aspartate aminotransferase and 6-phosphogluconate dehydrogenase displayed two multienzyme phenotypes that were widespread in plants throughout the state. Random amplified polymorphic DNA analysis was conducted on samples of the two isoenzymic phenotypes collected throughout California, as well as additional accessions from France and Turkey and Salsola paulsenii Litv. Six primers produced 23 polymorphic bands. Analysis of the patterns of bands by calculation of simple matching coefficients and cluster analysis confirmed the genetic distinctness of the two isoenzymic phenotypes of S. tragus; S. paulsenii was markedly different from both types. Mean fruit weights from plants grown under similar conditions were different between the two types as well. These results and preliminary cytological analysis together suggest that the two types are actually two different species of Salsola, only one of which has been previously recognized. Analysis of the DNA-based markers suggests that one of the genetic entities may be closely related to Salsola found in Europe, while the area of origin of the second entity is currently obscure.Key words: allozyme, genetic diversity, RAPD assay, Salsola tragus, Salsola paulsenii.
Genetic structure arises when limited gene flow between populations favours the development of distinct arrays of genetic characters within each population. Determining the spatial scale at which this differentiation occurs is critical to our understanding of population biology and microevolution of species. The genetic structure and spatial pattern of genetic variation in an endemic, clonal perennial, Wyethia reticulata E. Greene, was investigated using random amplified polymorphic DNA (RAPD) markers and allozyme alleles. Large stands (250–360 m2) were found to contain few genetic individuals. Despite the small population sizes and endemism of the species, W. reticulata was highly diverse genetically, with most of the variation (75–81%) distributed within populations. A population structure in full agreement with spatially defined populations was achieved only by combining RAPD and allozyme markers. Analysis using both types of markers appeared to provide estimates of genetic similarity between individuals that were most consistent with empirical data on plant distributions. We postulated that large, long‐lived clones dominated genetic relationships within populations but also provided opportunities for gene flow between populations on a longer time scale. The two marker types yielded different estimates of between‐individual similarity and revealed disparate patterns of population structure. This result will arise because allozymes and random DNA segments have dissimilar evolutionary dynamics with respect to mutation and selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.