Phosphodiesterase 10A (PDE10A) is a striatum-enriched, dual-specific cyclic nucleotide phosphodiesterase that has gained considerable attention as a potential therapeutic target for psychiatric disorders such as schizophrenia. As such, a PDE10A-selective inhibitor compound, MP-10, has recently entered clinical testing. Since little is known about the cellular regulation of PDE10A, we sought to elucidate the mechanisms that govern its subcellular localization in striatal medium spiny neurons. Previous reports suggest that PDE10A is primarily membrane bound and is transported throughout medium spiny neuron axons and dendrites. Moreover, it has been shown in PC12 cells that the localization of the major splice form, PDE10A2, may be regulated by protein kinase A phosphorylation at threonine 16 (Thr-16). Using an antibody that specifically recognizes phosphorylated Thr-16 (pThr-16) of PDE10A2, we provide evidence that phosphorylation at Thr-16 is critical for the regulation of PDE10A subcellular localization in vivo. Furthermore, we demonstrate in primary mouse striatal neuron cultures that PDE10A membrane association and transport throughout dendritic processes requires palmitoylation of cysteine 11 (Cys-11) of PDE10A2, likely by the palmitoyl acyltransferases DHHC-7 and -19. Finally, we show that Thr-16 phosphorylation regulates PDE10A trafficking and localization by preventing palmitoylation of Cys-11 rather than by interfering with palmitate-lipid interactions. These data support a model whereby PDE10A trafficking and localization can be regulated in response to local fluctuations in cAMP levels. Given this, we propose that excessive striatal dopamine release, as occurs in schizophrenia, might exert differential effects on the regulation of PDE10A localization in the two striatal output pathways.
Heart failure is one of the major causes of death in the Western world because cardiac muscle loss is largely irreversible and can lead to a relentless decline in cardiac function. Novel therapies are needed since the only therapy to effectively replace lost myocytes today is transplantation of the entire heart. The advent of embryonic and induced pluripotent stem cell (ESC/iPSC) technologies offers the unprecedented possibility of devising cell replacement therapies for numerous degenerative disorders. Not only are ESCs and iPSCs a plausible source of cardiomyocytes in vitro for transplantation, they are also useful tools to elucidate the biology of stem cells that reside in the adult heart and define signaling molecules that might enhance the limited regenerative capability of the adult human heart. Here, we review the extracellular factors that control stem cell cardiomyogenesis and describe new approaches that combine embryology with stem cell biology to discover drug-like small molecules that stimulate cardiogenesis and potentially contribute to the development of pharmaceutical strategies for heart muscle regeneration.
Increasingly, organotypic cellular platforms are being recognized as useful tools in drug discovery. This review offers an industry-centric perspective on the benefits of emerging complex cell models over conventional 2D systems, as well as the challenges and opportunities for incorporating these multidimensional platforms into high-density formats. We particularly highlight the need for novel chemical sensors to noninvasively quantitate 3D structures in real time, and we contend that the use of more focused chemical and genomics libraries will enable screening of complex cell models derived from primary and induced pluripotent stem cells. Finally, we offer outlooks on several emerging technologies that show great potential for future integration of complex cell systems into contemporary drug screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.