Exposures to ambient air pollutants have been associated with adverse birth outcomes. We investigated the effects of air pollutants on birth weight mediated by reduced fetal growth among term infants who were born in California during 1975–1987 and who participated in the Children’s Health Study. Birth certificates provided maternal reproductive history and residence location at birth. Sociodemographic factors and maternal smoking during pregnancy were collected by questionnaire. Monthly average air pollutant levels were interpolated from monitors to the ZIP code of maternal residence at childbirth. Results from linear mixed-effects regression models showed that a 12-ppb increase in 24-hr ozone averaged over the entire pregnancy was associated with 47.2 g lower birth weight [95% confidence interval (CI), 27.4–67.0 g], and this association was most robust for exposures during the second and third trimesters. A 1.4-ppm difference in first-trimester carbon monoxide exposure was associated with 21.7 g lower birth weight (95% CI, 1.1–42.3 g) and 20% increased risk of intrauterine growth retardation (95% CI, 1.0–1.4). First-trimester CO and third-trimester O3 exposures were associated with 20% increased risk of intrauterine growth retardation. A 20-μg/m3 difference in levels of particulate matter ≤ 10 μm in aerodynamic diameter (PM10) during the third trimester was associated with a 21.7-g lower birth weight (95% CI, 1.1–42.2 g), but this association was reduced and not significant after adjusting for O3. In summary, O3 exposure during the second and third trimesters and CO exposure during the first trimester were associated with reduced birth weight.
A history of increased level of lifetime exposure to ambient O3 is associated with decreased function of airways in which O3 deposition in the lungs is the greatest. Adolescents with intrinsically smaller airways appear to be at greatest risk. Any environmental or genetic factors that lead to reduced airway size may lead to increased susceptibility to the adverse effects of ambient ozone.
Background:Childhood body mass index (BMI) and obesity prevalence have been associated with exposure to secondhand smoke (SHS), maternal smoking during pregnancy, and vehicular air pollution. There has been little previous study of joint BMI effects of air pollution and tobacco smoke exposure.Methods:Information on exposure to SHS and maternal smoking during pregnancy was collected on 3,318 participants at enrollment into the Southern California Children’s Health Study. At study entry at average age of 10 years, residential near-roadway pollution exposure (NRP) was estimated based on a line source dispersion model accounting for traffic volume, proximity, and meteorology. Lifetime exposure to tobacco smoke was assessed by parent questionnaire. Associations with subsequent BMI growth trajectory based on annual measurements and attained BMI at 18 years of age were assessed using a multilevel modeling strategy.Results:Maternal smoking during pregnancy was associated with estimated BMI growth over 8-year follow-up (0.72 kg/m2 higher; 95% CI: 0.14, 1.31) and attained BMI (1.14 kg/m2 higher; 95% CI: 0.66, 1.62). SHS exposure before enrollment was positively associated with BMI growth (0.81 kg/m2 higher; 95% CI: 0.36, 1.27) and attained BMI (1.23 kg/m2 higher; 95% CI: 0.86, 1.61). Growth and attained BMI increased with more smokers in the home. Compared with children without a history of SHS and NRP below the median, attained BMI was 0.80 kg/m2 higher (95% CI: 0.27, 1.32) with exposure to high NRP without SHS; 0.85 kg/m2 higher (95% CI: 0.43, 1.28) with low NRP and a history of SHS; and 2.15 kg/m2 higher (95% CI: 1.52, 2.77) with high NRP and a history of SHS (interaction p-value 0.007). These results suggest a synergistic effect.Conclusions:Our findings strengthen emerging evidence that exposure to tobacco smoke and NRP contribute to development of childhood obesity and suggest that combined exposures may have synergistic effects.Citation:McConnell R, Shen E, Gilliland FD, Jerrett M, Wolch J, Chang CC, Lurmann F, Berhane K. 2015. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: the Southern California Children’s Health Study. Environ Health Perspect 123:360–366; http://dx.doi.org/10.1289/ehp.1307031
Average growth of lung function over a 4-yr period, in three cohorts of southern California children who were in the fourth, seventh, or tenth grade in 1993, was modeled as a function of average exposure to ambient air pollutants. In the fourth-grade cohort, significant deficits in growth of lung function (FEV 1 , FVC, maximal midexpiratory flow [MMEF], and FEF 75 ) were associated with exposure to particles with aerodynamic diameter less than 10 m (PM 10 ), PM 2.5 , PM 10 -PM 2.5 , NO 2 , and inorganic acid vapor (p Ͻ 0.05). No significant associations were observed with ozone. The estimated growth rate for children in the most polluted of the communities as compared with the least polluted was predicted to result in a cumulative reduction of 3.4% in FEV 1 and 5.0% in MMEF over the 4-yr study period. The estimated deficits were generally larger for children spending more time outdoors. In the seventh-and tenth-grade cohorts, the estimated pollutant effects were also negative for most lung function measures, but sample sizes were lower in these groups and none achieved statistical significance. The results suggest that significant negative effects on lung function growth in children occur at current ambient concentrations of particles, NO 2 , and inorganic acid vapor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.