Abstract:Tropical montane cloud forests (TMCF) typically experience conditions of frequent to persistent fog. On the basis of the altitudinal limits between which TMCF generally occur (800-3500 m.a.s.l. depending on mountain size and distance to coast) their current areal extent is estimated at ¾215 000 km 2 or 6Ð6% of all montane tropical forests. Alternatively, on the basis of remotely sensed frequencies of cloud occurrence, fog-affected forest may occupy as much as 2Ð21 Mkm 2 . Four hydrologically distinct montane forest types may be distinguished, viz. lower montane rain forest below the cloud belt (LMRF), tall lower montane cloud forest (LMCF), upper montane cloud forest (UMCF) of intermediate stature and a group that combines stunted sub-alpine cloud forest (SACF) and 'elfin' cloud forest (ECF). Average throughfall to precipitation ratios increase from 0Ð72 š 0Ð07 in LMRF (n D 15) to 0Ð81 š 0Ð11 in LMCF (n D 23), to 1Ð0 š 0Ð27 (n D 18) and 1Ð04 š 0Ð25 (n D 8) in UMCF and SACF-ECF, respectively. Average stemflow fractions increase from LMRF to UMCF and ECF, whereas leaf area index (LAI) and annual evapotranspiration (ET) decrease along the same sequence. Although the data sets for UMCF (n D 3) and ECF (n D 2) are very limited, the ET from UMCF (783 š 112 mm) and ECF (547 š 25 mm) is distinctly lower than that from LMCF (1188 š 239 mm, n D 9) and LMRF (1280 š 72 mm; n D 7). Field-measured annual 'cloud-water' interception (CWI) totals determined with the wet-canopy water budget method (WCWB) vary widely between locations and range between 22 and 1990 mm (n D 15). Field measured values also tend to be much larger than modelled amounts of fog interception, particularly at exposed sites. This is thought to reflect a combination of potential model limitations, a mismatch between the scale at which the model was applied (1 ð 1 km) and the scale of the measurements (small plots), as well as the inclusion of near-horizontal wind-driven precipitation in the WCWB-based estimate of CWI. Regional maps of modelled amounts of fog interception across the tropics are presented, showing major spatial variability. Modelled contributions by CWI make up less than 5% of total precipitation in wet areas to more than 75% in low-rainfall areas. Catchment water yields typically increase from LMRF to UMCF and SACF-ECF reflecting concurrent increases in incident precipitation and decreases in evaporative losses. The conversion of LMCF (or LMRF) to pasture likely results in substantial increases in water yield. Changes in water yield after UMCF conversion are probably modest due to trade-offs between concurrent changes in ET and CWI. General circulation model (GCM)-projected rates of climatic drying under SRES greenhouse gas scenarios to the year 2050 are considered to have a profound effect on TMCF hydrological functioning and ecology, although different GCMs produce different and sometimes opposing results. Whilst there have been substantial increases in our understanding of the hydrological processes operating in TMCF, additional re...
Migration of large-bodied ''macroconsumers'' (e.g., fishes, shrimps, and snails) is an important functional linkage between many tropical rivers and their estuaries. Increasingly, this linkage is being severed by dams and water abstraction. The ecological impacts of these activities are poorly understood and are largely being ignored by dam operators. We investigated the direct effects of a water intake and low-head dam on the migration of amphidromous freshwater shrimps between the headwater streams and estuary of the Río Espíritu Santo, Puerto Rico, USA. Both downstream migratory drift of larvae and upstream migration of postlarvae had strong diel patterns, with most activity occurring at night. Unlike large dams on the island, this low-head dam did not act as a complete barrier to the upstream migration of metamorphosed postlarvae. However, the dam did cause large numbers of postlarval shrimps to accumulate directly downstream of the structure. Mortality of drifting first-stage larvae by entrainment into the water intake during downstream migration averaged 42% during the 69-d study period. During low discharges, 100% of the drifting larvae were entrained by the intake. The rate of nocturnal entrainmentinduced mortality averaged 233 larvae/s and peaked at 1167 larvae/s. We used our field data and a 30-yr discharge record to model the long-term impacts of different intake management strategies on the entrainment mortality at this dam. The simulation model estimated long-term mean daily entrainment mortality at 34-62%, depending on the amount of water extracted from the river. Monthly differences in mean daily entrainment mortality (27-76% depending on estimates of abstraction) were caused by seasonal variation in discharge. Modeling of mitigation options suggested that daily entrainment mortality of larvae could be reduced to 11-20% if water abstraction was halted for 5 h during evening periods of peak drift. Impacts of the dam and operations can be significantly ameliorated by 3-5 h stoppages in water abstraction during peak nocturnal larval drift, upkeep of a functional fish ladder, and maintenance of minimum flow over the dam. Since the impacts of dams depend on the hydrology and design of specific water intake systems, mitigation strategies must be tailored to individual dams and intakes. However, our approach and results are likely to apply to low-head dams throughout the range of amphidromous species.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.Wiley, Association for Tropical Biology and Conservation are collaborating with JSTOR to digitize, preserve and extend access to Biotropica ABSTRACT On 18 September 1989 Hurricane Hugo defoliated large forested areas of northeastern Puerto Rico. In two severely damaged subtropical wet forest sites, a mean of 1006-1083 g/m2, or 419-451 times the mean daily input of fine litter (leaves, small wood, and miscellaneous debris) was deposited on the forest floor. An additional 928 g/m2 of litter was suspended above the ground. A lower montane rain forest site received 682 times the mean daily fine
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.