Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.
Dayton, OH 45440Abstract An in-house computational and experimental program to investigate and develop an air breathing pulse detonation engine (PDE) that uses a practical fuel (kerosene based, fleet-wide use, "JP" type) is currently underway at the Combustion Sciences Branch of the Turbine Engine Division of the Air Force Research Laboratory (AFRL/PRTS). PDE's have the potential of high thrust, low weight, low cost, high scalability, and wide operating range, but several technological hurdles must be overcome before a practical engine can be designed. This research effort involves investigating such critical issues as: detonation initiation and propagation; valving, timing and control; instrumentation and diagnostics; purging, heat transfer, and repetition rate; noise and multi-tube effects; detonation and deflagration to detonation transition modeling; and performance prediction and analysis. An innovative, four-detonation-tube engine design is currently in test and evaluation. Preliminary data are obtained with premixed hydrogen/air as the fuel/oxidizer to demonstrate proof of concept and verify models. Techniques for initiating detonations in hydrogen/air mixtures are developed without the use of oxygen enriched air. An overview of the AFRL/PRTS PDE development research program and hydrogen/air results are presented.
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.
Dayton, OH 45440Abstract An in-house computational and experimental program to investigate and develop an air breathing pulse detonation engine (PDE) that uses a practical fuel (kerosene based, fleet-wide use, "JP" type) is currently underway at the Combustion Sciences Branch of the Turbine Engine Division of the Air Force Research Laboratory (AFRL/PRTS). PDE's have the potential of high thrust, low weight, low cost, high scalability, and wide operating range, but several technological hurdles must be overcome before a practical engine can be designed. This research effort involves investigating such critical issues as: detonation initiation and propagation; valving, timing and control; instrumentation and diagnostics; purging, heat transfer, and repetition rate; noise and multi-tube effects; detonation and deflagration to detonation transition modeling; and performance prediction and analysis. An innovative, four-detonation-tube engine design is currently in test and evaluation. Preliminary data are obtained with premixed hydrogen/air as the fuel/oxidizer to demonstrate proof of concept and verify models. Techniques for initiating detonations in hydrogen/air mixtures are developed without the use of oxygen enriched air. An overview of the AFRL/PRTS PDE development research program and hydrogen/air results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.