There is a long-standing debate in the literature of stratified flows over topography concerning the correct dimensionless number to refer to as a Froude number. Common definitions using external quantities of the flow include $U/(ND)$, $U/(Nh_{0})$, and $Uk/N$, where $U$ and $N$ are, respectively, scales for the background velocity and buoyancy frequency, $D$ is the depth, and $h_{0}$ and $k^{-1}$ are, respectively, height and width scales of the topography. It is also possible to define an internal Froude number $Fr_{\unicode[STIX]{x1D6FF}}=u_{0}/\sqrt{g^{\prime }\unicode[STIX]{x1D6FF}}$, where $u_{0}$, $g^{\prime }$, and $\unicode[STIX]{x1D6FF}$ are, respectively, the characteristic velocity, reduced gravity, and vertical length scale of the perturbation above the topography. For the case of hydrostatic lee waves in a deep ocean, both $U/(ND)$ and $Uk/N$ are insignificantly small, rendering the dimensionless number $Nh_{0}/U$ the only relevant dynamical parameter. However, although it appears to be an inverse Froude number, such an interpretation is incorrect. By non-dimensionalizing the stratified Euler equations describing the flow of an infinitely deep fluid over topography, we show that $Nh_{0}/U$ is in fact the square of the internal Froude number because it can identically be written in terms of the inner variables, $Fr_{\unicode[STIX]{x1D6FF}}^{2}=Nh_{0}/U=u_{0}^{2}/(g^{\prime }\unicode[STIX]{x1D6FF})$. Our scaling also identifies $Nh_{0}/U$ as the ratio of the vertical velocity scale within the lee wave to the group velocity of the lee wave, which we term the vertical Froude number, $Fr_{vert}=Nh_{0}/U=w_{0}/c_{g}$. To encapsulate such behaviour, we suggest referring to $Nh_{0}/U$ as the lee-wave Froude number, $Fr_{lee}$.
Ocean lee waves occur on length scales that are smaller than the grid scale of global circulation models (GCMs). Therefore, such models must parameterize the drag associated with launching lee waves. This paper compares the lee wave drag predicted by existing parameterizations with the drag measured in high-resolution nonhydrostatic numerical simulations of a lee wave over periodic sinusoidal bathymetry. The simulations afford a time-varying glimpse at the nonlinear and nonhydrostatic oceanic lee wave spinup process and identify a characteristic time scale to reach steady state. The maximum instantaneous lee wave drag observed during the spinup period is found to be well predicted by linear lee wave theory for all hill heights. In steady state, the simulations demonstrate the applicability of parameterizing the drag based on applying linear theory to the lowest overtopping streamline of the flow (LOTS), as is currently employed in GCMs. However, because existing parameterizations are based only on the height of the LOTS, they implicitly assume hydrostatic flow. For hills tall enough to trap water in their valleys, the simulations identify a set of nonhydrostatic processes that can result in a reduction of the lee wave drag from that given by hydrostatic parameterizations. The simulations suggest implementing a time-dependent nonhydrostatic version of the LOTS-based parameterization of lee wave drag and demonstrate the remarkable applicability of linear lee wave theory to oceanic lee waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.