Exocytosis and the cell-averaged cytosolic [Ca2+], [Ca2+]i, were tracked in single gonadotrophs. Cells released 100 granules/s at 1 microM = [Ca2+]i when gonadotropin-releasing hormone (GnRH) activated IP3-mediated Ca2+ release from internal stores, but only 1 granule/s when [Ca2+]i was raised uniformly to 1 microM by other means. Strong exocytosis was then seen only at higher [Ca2+]i (half-maximal at 16 microM). Parallel second messengers did not contribute to GnRH-induced exocytosis, because IP3 alone was as effective as GnRH, and because even GnRH failed to trigger rapid exocytosis when the [Ca2+]i rise was blunted by EGTA. When [Ca2+]i was released from stores, exocytosis depended on [Ca2+]i rising rapidly, as if governed by Ca2+ flux into the cytosol. We suggest that IP3 releases Ca2+ selectively from subsurface cisternae, raising [Ca2+] near exocytic sites 5-fold above the cell average.
Abstract. We have investigated the mechanism of cell fusion mediated by HA, the fusogenic hemagglutinin of the Influenza viral envelope. Single erythrocytes (RBCs) were attached to fibroblasts expressing the HA on their cell surface, and fusion of the paired cells was triggered by rapid acidification. The RBC membrane was stained with fluorescent lipid, and the fusion-induced escape of lipid into the fibroblast was observed by quantitative image analysis. At the same time, the formation of an aqueous connection (i.e., the fusion pore) between the two cells was monitored electrically. Within minutes after acidification, an electrical conductance between the two cells appeared abruptly as the fusion pore opened, and then increased gradually as the pore dilated. Later, fluorescent lipid diffused into the fibroblast, approaching equilibrium over the next 5-20 min. No lipid flux was seen while the pore conductance remained 0.5 nS or less. Evidently lipid flux requires a threshold pore size. Our finding suggests that the smallest and earliest fusion pores are surrounded by a ring of protein. A fusion pore expands by breaking this ring and recruiting lipid into its circumference.
Munc18-1 binds to syntaxin-1A via two distinct sites referred to as the "closed" conformation and N terminus binding. The latter has been shown to stimulate soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated exocytosis, whereas the former is believed to be inhibitory or dispensable. To precisely define the contributions of each binding mode, we have engineered Munc18-1/-2 double knockdown neurosecretory cells and show that not only syntaxin-1A and -1B but also syntaxin-2 and -3 are significantly reduced as a result of Munc18-1 and -2 knockdown. Syntaxin-1 was mislocalized and the regulated secretion was abolished. We next examined the abilities of Munc18-1 mutants to rescue the defective phenotypes. Mutation (K46E/E59K) of Munc18-1 that selectively prevents binding to closed syntaxin-1 was unable to restore syntaxin-1 expression, localization, or secretion. In contrast, mutations (F115E/ E132A) of Munc18-1 that selectively impair binding to the syntaxin-1 N terminus could still rescue the defective phenotypes. Our results indicate that Munc18-1 and -2 act in concert to support the expression of a broad range of syntaxins and to deliver syntaxin-1 to the plasma membrane. Our studies also indicate that the binding to the closed conformation of syntaxin is essential for Munc18-1 stimulatory action, whereas the binding to syntaxin N terminus plays a more limited role in neurosecretory cells.
In pituitary gonadotropes, gonadotropin-releasing hormone (GnRH) induces the rhythmic release of Ca2+ from an inositol 1,4,5-trisphosphate (IP3)-sensitive store. Simultaneous measurement of the concentration of cytosolic free Ca2+ ([Ca2+]i) and exocytosis in single identified gonadotropes showed that each elevation of [Ca2+]i induced a burst of exocytosis. These phenomena were largely suppressed by buffering of [Ca2+]i but persisted in the absence of extracellular Ca2+. Activation of voltage-gated Ca2+ channels by brief depolarizations seldom supplied enough Ca2+ for exocytosis, but [Ca2+]i elevations induced by photolysis of caged IP3 did trigger exocytosis, confirming that GnRH-stimulated gonadotropic hormone secretion is closely coupled to intracellular Ca2+ release. Agonist-induced oscillations of [Ca2+]i in secretory cells may be a mechanism to optimize the secretory output while avoiding the toxic effects of sustained elevation of [Ca2+]i.
Using a Ca2+‐imaging technique, we studied the action of ATP on the intracellular Ca2+ concentration ([Ca2+]i) of fura‐2‐loaded mixtures of type I and type II cells dissociated from rat carotid bodies. ATP (100 μm) triggered a transient rise in [Ca2+]i in the spindle‐shaped type II (sustentacular) cells, but not the ovoid type I (glomus) cells. When challenged with ionomycin (1 μm), no amperometry signal could be detected from the ATP‐responsive type II cells, suggesting that these cells lacked catecholamine‐containing granules. In contrast, KCl depolarization triggered robust quantal catecholamine release from type I cells that were not responsive to ATP. In type II cells voltage clamped at −70 mV, the ATP‐induced [Ca2+]i rise was not accompanied by any current change, suggesting that P2X receptors are not involved. The ATP‐induced Ca2+ signal could be observed in the presence of Ni2+ (a blocker of voltage‐gated Ca2+ channels) or in the absence of extracellular Ca2+, indicating that Ca2+ release from intracellular stores was the dominant mechanism. The order of purinoreceptor agonist potency in triggering the [Ca2+]i rise was UTP > ATP > 2‐methylthioATP ≫α,β‐methyleneATP, implicating the involvement of P2Y2 receptors. In carotid body sections, immunofluorescence revealed localization of P2Y2 receptors on spindle‐shaped type II cells that partially enveloped ovoid type I cells. Since ATP is released from type I cells during hypoxia, we suggest that the ATP‐induced Ca2+ signal in type II cells can mediate paracrine interactions within the carotid bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.