Climate conditions tend to differ along an altitudinal gradient, resulting in some species groups’ patterns of lower species richness with increasing altitude. While this pattern is well understood for tropical mountains, studies investigating possible determinants of variation in beta-diversity at its different altitudes are scarce. We sampled bee and wasp communities (Hymenoptera: Aculeata) along an altitudinal gradient (1,000–2,000 m.a.s.l.) in a tropical mountainous region of Brazil. Trap nests and Moericke traps were established at six sampling points, with 200 m difference in altitude between each point. We obtained average climate data (1970–2000) from Worldclim v2 for altitudes at each sampling site. Nest traps captured 17 bee and wasp species from six families, and Moericke traps captured 124 morphospecies from 13 families. We found a negative correlation between altitude and species richness and abundance. Temperature, precipitation, water vapor pressure, and wind speed influenced species richness and abundance, and were correlated with altitude. β-diversity was primarily determined by species turnover as opposed to nestedness, and Aculeate community similarity was higher for more similar altitudinal ranges. Moericke traps seem to be more efficient for altitudinal surveys compared to nest traps. We found high occurrence of singleton and doubleton species at all altitudes, highlighting the need for long-term studies to efficiently assess hymenopteran diversity in these environments.
Naturally fragmented landscapes are adequate systems for evaluating patterns and mechanisms that determine species distribution without confounding effects of anthropogenic fragmentation and habitat loss. We aimed to evaluate an ant metacommunity's spatiotemporal patterns in montane forest islands amid a grassland-dominated matrix. We assessed these patterns by deconstructing the ant metacommunity into forest-dependent and habitat generalist species. We sampled twice a year (summer and winter) over 2 years (2014 and 2015), using soil and arboreal pitfall traps, in fourteen forest islands (varying in size, shape, and connectivity) in the Espinhaço Range Biosphere Reserve, Brazil. We evaluated the relationship between ant species richness, composition (β-diversity), and predictor variables of forest island structure (canopy cover and understory density) and landscape structure (forest amount, number of forest islands, and shape). We sampled 99 ant species, 66.7% of which were classified as forest-dependent and 33.3% as habitat generalist species. We found that ant β-diversity was higher in space than in time, and that species composition variation in time (temporal β-diversity) differed between ant species groups. Both ant groups responded differently to forest island and landscape structure characteristics. Landscape structure seems to act as a spatial filter and the forest islands' local characteristics as an environmental filter, which jointly determine the local and regional diversity. We demonstrate the importance that forest archipelagos pose to ant metacommunity's structure and dynamics in montane tropical regions. Mountaintop conservation and management strategies must consider the forest island archipelago to maintain the biodiversity and the functioning of these systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.