The rhizobiome is being increasingly acknowledged as a key player in plant health and breeding strategies. The pine pitch canker (PPC), caused by the fungus Fusarium circinatum, affects pine species with varying susceptibility degrees. Our aims were to explore the bacterial rhizobiome of a susceptible (Pinus radiata) and a resistant (Pinus pinea) species together with other physiological traits, and to analyze shifts upon F. circinatum inoculation. Pinus seedlings were stem inoculated with F. circinatum spores and needle gas exchange and antioxidant-related parameters were analyzed in non-inoculated and inoculated plants. Rhizobiome structure was evaluated through 16S rRNA gene massive parallel sequencing. Species (non-inoculated plants) harbored distinct rhizobiomes (<40% similarity), where P. pinea displayed a rhizobiome with increased abundance of taxa described in suppressive soils, displaying plant-growth-promoting (PGP) traits and/or antifungal activity. Plants of this species also displayed higher levels of phenolic compounds. Fusarium circinatum induced slight changes in the rhizobiome of both species and a negative impact in photosynthetic-related parameters in P. radiata. We concluded that the rhizobiome of each pine species is distinct and higher abundance of bacterial taxa associated to disease protection was registered for the PPC-resistant species. Furthermore, differences in the rhizobiome are paralleled by a distinct content in phenolic compounds, which are also linked to plants’ resistance against PPC. This study unveils a species-specific rhizobiome and provides insights to exploit the rhizobiome for plant selection in nurseries and for rhizobiome-based plant-growth-promoting strategies, boosting environmentally friendly disease control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.