BackgroundCountries are increasingly considering how to reduce or even end tobacco consumption, and raising tobacco taxes is a potential strategy to achieve these goals. We estimated the impacts on health, health inequalities, and health system costs of ongoing tobacco tax increases (10% annually from 2011 to 2031, compared to no tax increases from 2011 [“business as usual,” BAU]), in a country (New Zealand) with large ethnic inequalities in smoking-related and noncommunicable disease (NCD) burden.Methods and FindingsWe modeled 16 tobacco-related diseases in parallel, using rich national data by sex, age, and ethnicity, to estimate undiscounted quality-adjusted life-years (QALYs) gained and net health system costs over the remaining life of the 2011 population (n = 4.4 million). A total of 260,000 (95% uncertainty interval [UI]: 155,000–419,000) QALYs were gained among the 2011 cohort exposed to annual tobacco tax increases, compared to BAU, and cost savings were US$2,550 million (95% UI: US$1,480 to US$4,000). QALY gains and cost savings took 50 y to peak, owing to such factors as the price sensitivity of youth and young adult smokers. The QALY gains per capita were 3.7 times greater for Māori (indigenous population) compared to non-Māori because of higher background smoking prevalence and price sensitivity in Māori. Health inequalities measured by differences in 45+ y-old standardized mortality rates between Māori and non-Māori were projected to be 2.31% (95% UI: 1.49% to 3.41%) less in 2041 with ongoing tax rises, compared to BAU. Percentage reductions in inequalities in 2041 were maximal for 45–64-y-old women (3.01%). As with all such modeling, there were limitations pertaining to the model structure and input parameters.ConclusionsOngoing tobacco tax increases deliver sizeable health gains and health sector cost savings and are likely to reduce health inequalities. However, if policy makers are to achieve more rapid reductions in the NCD burden and health inequalities, they will also need to complement tobacco tax increases with additional tobacco control interventions focused on cessation.
Implementing endgame strategies is needed to achieve tobacco endgame targets and reduce inequalities in smoking. Given such strategies are new, modelling studies provide provisional information on what approaches may be best.
Objective To inform endgame strategies in tobacco control, this study aimed to estimate the impact of interventions that markedly reduced availability of tobacco retail outlets. The setting was New Zealand, a developed nation where the government has a smokefree nation goal in 2025. Methods Various legally mandated reductions in outlets that were phased in over 10 years were modelled. Geographic analyses using the road network were used to estimate the distance and time travelled from centres of small areas to the reduced number of tobacco outlets, and from there to calculate increased travel costs for each intervention. Age-specific price elasticities of demand were used to estimate future smoking prevalence. Results With a law that required a 95% reduction in outlets, the cost of a pack of 20 cigarettes (including travel costs) increased by 20% in rural areas and 10% elsewhere and yielded a smoking prevalence of 9.6% by 2025 (compared with 9.9% with no intervention). The intervention that permitted tobacco sales at only 50% of liquor stores resulted in the largest cost increase (∼$60/ pack in rural areas) and the lowest prevalence (9.1%) by 2025. Elimination of outlets within 2 km of schools produced a smoking prevalence of 9.3%. Conclusions This modelling merges geographic, economic and epidemiological methodologies in a novel way, but the results should be interpreted cautiously and further research is desirable. Nevertheless, the results still suggest that tobacco outlet reduction interventions could modestly contribute to an endgame goal.
These tobacco outlet reductions reduced smoking prevalence, achieved health gains and saved health system costs. Effects would be larger if outlet reductions have additional spill-over effects (eg, smoking denormalisation). While these interventions were not as effective as tobacco tax increases (using the same model), these and other strategies could be combined to maximise health gain and to maximise cost-savings to the health system.
The package of a quitline service and its promotion in the mass media appears to be an effective means to generate health gain, address health inequalities and save health system costs. Nevertheless, the role of this intervention needs to be compared with other tobacco control and health sector interventions, some of which may be even more cost saving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.