Abstract. In this paper, the localization of persons by means of a Wireless Sensor Network (WSN) is considered. Persons carry on-body sensor nodes and move within a WSN. The location of each person is calculated on this node and communicated through the network to a central data sink for visualization. Applications of such a system could be found in mass casualty events, firefighter scenarios, hospitals or retirement homes for example. For the location estimation on the sensor node, three derivatives of the Kalman filter and a closed-form solution (CFS) are applied, compared, and evaluated in a real-world scenario. A prototype 65-node ZigBee WSN is implemented and data are collected in in-and outdoor environments with differently positioned on-body nodes. The described estimators are then evaluated off-line on the experimentally collected data. The goal of this paper is to present a comprehensive real-world evaluation of methods for person localization in a WSN based on received signal strength (RSS) range measurements. It is concluded that person localization in in-and outdoor environments is possible under the considered conditions with the considered filters. The compared methods allow for sufficiently accurate localization results and are robust against inaccurate range measurements.
Abstract-In range-based localization, the trajectory of a mobile object is estimated based on noisy range measurements between the object and known landmarks. In order to deal with this uncertain information, a Bayesian state estimator is presented, which exploits optimal stochastic linearization. Compared to standard state estimators like the Extended or Unscented Kalman Filter, where a point-based Gaussian approximation is used, the proposed approach considers the entire Gaussian density for linearization. By employing the common assumption that the state and measurements are jointly Gaussian, the linearization can be calculated in closed form and thus analytic expressions for the range-based localization problem can be derived.
Abstract-A new Bayesian filtering technique for estimating signal parameters directly from discrete-time sequences is introduced. The so called probabilistic instantaneous matching algorithm recursively updates the probability density function of the parameters for every received sample and, thus, provides a high update rate up to the sampling rate with high accuracy. In order to do so, one of the signal sequences is used as part of a time-variant nonlinear measurement equation. Furthermore, the time-variant nature of the parameters is explicitly considered via a system equation, which describes the evolution of the parameters over time. An important feature of the probabilistic instantaneous matching algorithm is that it provides a probability density function over the parameter space instead of a single point estimate. This probability density function can be used in further processing steps, e.g. a range based localization algorithm in the case of time-of-arrival estimation.
Abstract-Extended range telepresence aims at enabling a user to experience virtual or remote environments, taking his own body movements as an input to define walking speed and viewing direction. Therefore, localization and tracking of the user's pose (position and orientation) is necessary to perform a body-centered scene rendering. Visual and acoustic feedback is provided to the user by a head mounted display (HMD). To allow for free movement within the user environment, the tracking system is supposed to be user-wearable and entirely wireless. Consequently, a lightweight design is presented featuring small dimensions to fit into a conventional 13" laptop backpack, which satisfies the above stated demands for highly immersive extended range telepresence scenarios. Dedicated embedded hardware combined with off-the-shelf components is employed to form a robust, low-cost telepresence system that can be easily installed in any living room.
Abstract-In range-based pose tracking, the translation and rotation of an object with respect to a global coordinate system has to be estimated. The ranges are measured between the target and the global frame. In this paper, an intelligent decomposition is introduced in order to reduce the computational effort for pose tracking. Usually, decomposition procedures only exploit conditionally linear models. In this paper, this principle is generalized to conditionally integrable substructures and applied to pose tracking. Due to a modified measurement equation, parts of the problem can even be solved analytically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.