Online monitoring is the task of identifying complex temporal patterns while incrementally processing streams of data-carrying events. Existing state-of-the-art monitors for first-order patterns, which may refer to and quantify over data values, can process streams of modest velocity in real-time. We show how to scale up first-order monitoring to substantially higher velocities by slicing the stream, based on the events’ data values, into substreams that can be monitored independently. Because monitoring is not embarrassingly parallel in general, slicing can lead to data duplication. To reduce this overhead, we adapt hash-based partitioning techniques from databases to the monitoring setting. We implement these techniques in an automatic data slicer based on Apache Flink and empirically evaluate its performance using two tools—MonPoly and DejaVu—to monitor the substreams. Our evaluation attests to substantial scalability improvements for both tools.
No abstract
Online monitoring is the task of identifying complex temporal patterns while incrementally processing streams of data-carrying events. Existing state-of-the-art monitors for first-order patterns, which may refer to and quantify over data values, can process streams of modest velocity in real-time. We show how to scale up first-order monitoring to substantially higher velocities by slicing the stream, based on the events' data values, into substreams that can be monitored independently. Because monitoring is not embarrassingly parallel in general, slicing can lead to data duplication. To reduce this overhead, we adapt hash-based partitioning techniques from databases to the monitoring setting. We implement these techniques in an automatic data slicer based on Apache Flink and empirically evaluate its performance using two tools-MonPoly and DejaVu-to monitor the substreams. Our evaluation attests to substantial scalability improvements for both tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.