We experimentally investigate the transmission of 10 × 8 GBd DP-1024QAM over full Raman amplified low-loss fiber spans. For multicarrier systems using 8-bit DACs, a record achievable information rate of 15.7 bit/symbol is observed after 200 km using standard intradyne detection.
We show that a single dark-pulse Kerr comb can generate high enough OSNR to carry 1.84 Pbit/s data, achieved by 223 WDM spectral lines modulated with 32-Gbaud, SNR-adapted probabilistically shaped DP-QAM, over a 37-core fiber.
In this paper, a rate-adaptive coded modulation (CM) system combining polar codes and many-to-one probabilistic shaping is constructed and experimentally demonstrated. We propose to control the polar codes using a fraction of bits referred to as pre-set bits. This not only allows to offset the puncturing loss of rate-adaptive polar codes but also provides shaping gains compared to the non-punctured polar codes. Preset bits and many-to-one shaping are combined to form a rateadaptive bit-interleaved CM system. We experimentally evaluate the system performance for 10×8-GBd dual polarization 256 quadrature amplitude modulation (QAM) wavelength division multiplexed (WDM) system with various input data rates ranging from 61 Gbps to 91 Gbps per carrier. The experimental results demonstrate a 200 km reach increase over a wide range of distances compared to the non-punctured polar codes and punctured polar codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.