Spatial multiplexing with multi-mode precoding provides a means to achieve both high capacity and high reliability in MultipleInput Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems. Multi-mode precoding uses linear transmit precoding that adapts the number of spatial multiplexing data streams or modes, according to the channel conditions. To do so, it typically requires complete knowledge of the transmit precoding matrices for each subcarrier at the transmitter. In this paper, we propose to reduce the feedback requirements by sending back the quantized right singular vectors of the MIMO channels at a fraction of the subcarriers and interpolating between them. Mode selection is performed at the receiver and the decisions are sent back to the transmitter. An interpolation algorithm is presented that is based on interpolation in the Stiefel manifold. BitError Rate (BER) performance simulations demonstrate the performance improvements provided by the proposed algorithms as a function of the feedback rate.
Abstract-The combination of space-time block coding (STBC) and direct-sequence code-division multiple access (DS-CDMA) has the potential to increase the performance of multiple users in a cellular network. However, if not carefully designed, the resulting transmission scheme suffers from increased multiuser interference (MUI), which dramatically deteriorates the performance. To tackle this MUI problem in the downlink, we combine two specific DS-CDMA and STBC techniques, namely single-carrier block transmission (SCBT) DS-CDMA and time-reversal STBC. The resulting transmission scheme allows for deterministic maximum-likelihood (ML) user separation through low-complexity code-matched filtering, as well as deterministic ML transmit stream separation through linear processing. Moreover, it can achieve maximum diversity gains of ( + 1) for every user in the system, irrespective of the system load, where is the number of transmit antennas, the number of receive antennas, and the order of the underlying multipath channels. In addition, it turns out that a low-complexity linear receiver based on frequency-domain equalization comes close to extracting the full diversity in reduced, as well as full load settings. In this perspective, we also develop two (recursive) least squares methods for direct equalizer design. Simulation results demonstrate the outstanding performance of the proposed transceiver compared to competing alternatives.Index Terms-Block transmission, direct-sequence code-division multiple access (DS-CDMA), equalizer design, frequency-selective fading channels, multiple-input-multiple-output (MIMO), space-time block coding (STBC).
To assess the performance of forthcoming 4th generation wireless local area networks, the algorithmic functionality is usually modelled using a high-level mathematical software package, for instance, Matlab. In order to validate the modelling assumptions against the real physical world, the high-level functional model needs to be translated into a prototype. A systematic system design methodology proves very valuable, since it avoids, or, at least reduces, numerous design iterations. In this paper, we propose a novel Matlab-to-hardware design flow, which allows to map the algorithmic functionality onto the target prototyping platform in a systematic and reproducible way. The proposed design flow is partly manual and partly tool assisted. It is shown that the proposed design flow allows to use the same testbench throughout the whole design flow and avoids time-consuming and errorprone intermediate translation steps.
Effective suppression of multiuser interference (MUI) and mitigation of frequency-selective fading effects within the complexity constraints of the mobile constitute major challenges for broadband cellular downlink transceiver design. Existing wideband direct-sequence (DS) code division multiple access (CDMA) transceivers suppress MUI statistically by restoring the orthogonality among users at the receiver. However, they call for receive diversity and multichannel equalization to improve the fading effects caused by deep channel fades. Relying on redundant block spreading and linear precoding, we design a so-called multicarrier block-spread- (MCBS-)CDMA transceiver that preserves the orthogonality among users and guarantees symbol detection, regardless of the underlying frequency-selective fading channels. These properties allow for deterministic MUI elimination through low-complexity block despreading and enable full diversity gains, irrespective of the system load. Different options to perform equalization and decoding, either jointly or separately, strike the trade-off between performance and complexity. To improve the performance over multi-input multi-output (MIMO) multipath fading channels, our MCBS-CDMA transceiver combines well with space-time block-coding (STBC) techniques, to exploit both multiantenna and multipath diversity gains, irrespective of the system load. Simulation results demonstrate the superior performance of MCBS-CDMA compared to competing alternatives
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.