Bone marrow cellularity is an important measure in diagnostic hematopathology. Currently, the gold standard for bone marrow cellularity estimation is manual inspection of hematoxylin and eosin stained whole slide images (H&E WSI) by hematopathologists. However, these assessments are subjective and subject to interobserver and intraobserver variability. This may be reduced by using a computer-assisted estimate of bone marrow cellularity. The aim of this study was to develop a fully automated algorithm to estimate bone marrow cellularity in H&E WSI stains using bone marrow segmentation. Data consisted of eight bone marrow H&E WSIs extracted from eight subjects. An algorithm was developed to estimate the bone marrow cellularity consisting of biopsy segmentation, tissue classification, and bone marrow segmentation. Segmentations of the red and yellow bone marrow (YBM) were used to estimate the bone marrow cellularity within the WSI H&E stains. The DICE coefficient between automatic tissue segmentations and ground truth segmentations conducted by an experienced hematopathologist were used for validation. Furthermore, the agreement between the automatic and two manual cellularity estimates was assessed using Bland-Altman plots and intraclass correlation coefficients (ICC). The validation of the bone marrow segmentation demonstrated an average DICE of 0.901 and 0.920 for the red and YBM, respectively. A mean cellularity estimate difference of −0.552 and − 7.816 was obtained between the automatic cellularity estimates and two manual cellularity estimates, respectively. An ICC of 0.980 (95%CI: 0.925-0.995, P-value: 5.51 × 10 −7 ) was obtained between the automatic and manual cellularity estimates based on manual annotations. The study demonstrated that it was possible to obtain bone marrow cellularity estimates with a good agreement with bone marrow cellularity estimates obtained from an experienced hematopathologist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.