Because plants are considered immobile, they remain underrepresented as concept generators for soft robots and soft machines. However, plants show a great variety of movements exclusively based on elastic deformation of regions within their moving organs. The absence of gliding parts, as found in the joints of vertebrates and insects, prevents stress concentration and attrition. Since plants have no central control unit (brain), stimulus-sensing, decision-making and reaction usually take place noncentrally in the hierarchically structured materials systems of the moving organs, in what can be regarded as an example of physical intelligence. These characteristics make plants interesting models for a new group of soft robots and soft machines that differ fundamentally from those inspired by animals. The potential of such plant-inspired soft robots and machines is shown in six examples and is illustrated by examples applied in architecture and medicine. Graphical abstract
Motile organs have evolved in climbing plants enabling them to find a support and, after secure attachment, to reach for sunlight without investing in a self-supporting stem. Searching movements, the twining of stems, and the coiling of tendrils are involved in successful plant attachment. Such coiling movements have great potential in robotic applications, especially if they are reversible. Here, the underlying mechanism of tendril movement based on contractile fibers is reported, as illustrated by a function-morphological analysis of tendrils in several liana species and the encoding of such a principle in a core-shell multimaterial fiber (MMF) system. MMFs are composed of a shape-memory core fiber (SMCF) and an elastic shell. The shape-memory effect of the core fibers enables the implementation of strain mismatch in the MMF by physical means and provides thermally controlled reversible motion. The produced MMFs show coiling and/or uncoiling behavior, with a high reversible actuation magnitude of ≈400%, which is almost 20 times higher compared with similar stimuli for sensitive soft actuators. The movements in these MMFs rely on the crystallization/melting behavior of oriented macromolecules of SMCF.
The climbing passionflower Passiflora discophora features branched tendrils with multiple adhesive pads at their tips allowing it to attach to large diameter supports and to flat surfaces. We conducted tensile tests to quantify the performance of this attachment system. We found that the force at failure varies with substrate, ontogenetic state (turgescent, senescent), and tendril size (i.e., tendril cross-sectional area and pad area). The tendrils proved to be well balanced in size and to attach firmly to a variety of substrates (force at failure up to 2 N). Pull-off tests performed with tendrils grown on either epoxy, plywood, or beech bark revealed that senescent tendrils could still bear 24%, 64%, or 100% of the force measured for turgescent tendrils, respectively, thus providing long-lasting attachment at minimal physiological costs. The tendril main axis was typically the weakest part of the adhesive system, whereas the pad-substrate interface never failed. This suggests that the plants use the slight oversizing of adhesive pads as a strategy to cope with “unpredictable” substrates. The pads, together with the spring-like main axis, which can, as shown, dissipate a large amount of energy when straightened, thus constitute a fail-safe attachment system.
Tendrils of climbing plants coil along their length, thus forming a striking helical spring and generating tensional forces. It is found that, for tendrils of the passion flower Passiflora caerulea, the generated force lies in the range of 6–140 mN, which is sufficient to lash the plant tightly to its substrate. Further, it is revealed that the generated force strongly correlates with the water status of the plant. Based on a combination of in situ force measurements with anatomical investigations and dehydration‐rehydration experiments on both entire tendril segments and isolated lignified tissues, a two‐phasic mechanism for spring formation is proposed. First, during the free coiling phase, the center of the tendril begins to lignify unilaterally. At this stage, both the generated tension and the stability of the form of the spring still depend on turgor pressure. The unilateral contraction of a bilayer as being the possible driving force for the tendril coiling motion is discussed. Second, in a stabilization phase, the entire center of the coiled tendril lignifies, stiffening the spring and securing its function irrespective of its hydration status.
Tendrils of climbing plants coil along their length and thus form a striking helical spring and generate tensional forces. We have found that, for tendrils of the passion flowerPassiflora caerulea, the generated force lies in the range of 6-140 mN, which is sufficient to lash the plant tightly to its substrate. Further, we revealed that the generated force strongly correlates with the water status of the plant. By combining force measurements with anatomical investigations and dehydration-rehydration experiments on both entire tendril segments and isolated lignified tissues, we are able to propose a two-phasic principle of spring formation: First, during the free coiling phase, the tendril coiling is based on the active contraction of a fiber ribbon in interaction with the surrounding parenchyma as resistance layer. Second, in a stabilization phase, the entire center of the coiled tendril lignifies, stiffening the spring and securing its function independent of hydration status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.