The main limitation of using topical corticosteroids in dermatology is their atrophic effects on the skin. We have previously proposed a molecular platform composed of CD44, EGFR, and hyaluronate synthase (HAS) that is functionally defective in dermatoporosis, a chronic cutaneous insufficiency/fragility syndrome. In this study, we explored the molecular mechanisms of the skin atrophy induced by corticosteroids. We observed an important skin atrophy and a significant decrease of hyaluronic acid (HA), its main cell surface receptor CD44, and F-actin in mouse skin treated with topical clobetasol propionate (CP). Human keratinocytes exposed to CP showed an impaired HA secretion and diminished expression of CD44 and HAS3. CP also abolished filopodia of keratinocytes exposed to CP together with a redistribution of CD44 and F-actin depolymerization. We also show that HA fragments of intermediary size (HAFi) induced keratinocyte filopodia and protected them against CP. Topical HAFi induced hyperplasia in mouse epidermis and prevented CP-induced atrophy. Our results suggest that a CD44/EGFR/HAS platform associated with F-actin and filopodia of keratinocytes is the target of corticosteroids for their atrophogenic effects. These observations may lead to the development of new treatment and prevention strategies for corticosteroid-induced skin atrophy.
Background NADPH oxidase 4 (NOX4) catalyzes the formation of hydrogen peroxide (H 2 O 2 ). NOX4 is highly expressed in the kidney, but its role in renal injury is unclear and may depend on its specific tissue localization. Methods We performed immunostaining with a specific anti-NOX4 antibody and measured NOX4 mRNA expression in human renal biopsies encompassing diverse renal diseases. We generated transgenic mice specifically overexpressing mouse Nox4 in renal tubular cells and subjected the animals to the unilateral ureteral obstruction (UUO) model of fibrosis. Results In normal human kidney, NOX4 protein expression was at its highest on the basolateral side of proximal tubular cells. NOX4 expression increased in mesangial cells and podocytes in proliferative diabetic nephropathy. In tubular cells, NOX4 protein expression decreased in all types of chronic renal disease studied. This finding was substantiated by decreased NOX4 mRNA expression in the tubulo-interstitial compartment in a repository of 175 human renal biopsies. Overexpression of tubular NOX4 in mice resulted in enhanced renal production of H 2 O 2 , increased NRF2 protein expression and decreased glomerular filtration, likely via stimulation of the tubulo-glomerular feedback. Tubular NOX4 overexpression had no obvious impact on kidney morphology, apoptosis, or fibrosis at baseline. Under acute and chronic tubular injury induced by UUO, overexpression of NOX4 in tubular cells did not modify the course of the disease. Conclusions NOX4 expression was decreased in tubular cells in all types of CKD tested. Tubular NOX4 overexpression did not induce injury in the kidney, and neither modified microvascularization, nor kidney structural lesions in fibrosis.
Proteinuria is associated with renal function decline and cardiovascular mortality. This association may be attributed in part to alterations of Klotho expression induced by albuminuria, yet the underlying mechanisms are unclear. The presence of albumin decreased Klotho expression in the POD‐ATTAC mouse model of proteinuric kidney disease as well as in kidney epithelial cell lines. This downregulation was related to both decreased Klotho transcription and diminished protein half‐life, whereas cleavage by ADAM proteases was not modified. The regulation was albumin specific since it was neither observed in the analbuminemic Col4α3−/− Alport mice nor induced by exposure of kidney epithelial cells to purified immunoglobulins. Albumin induced features of ER stress in renal tubular cells with ATF3/ATF4 activation. ATF3 and ATF4 induction downregulated Klotho through altered transcription mediated by their binding on the Klotho promoter. Inhibiting ER stress with 4‐PBA decreased the effect of albumin on Klotho protein levels without altering mRNA levels, thus mainly abrogating the increased protein degradation. Taken together, albuminuria decreases Klotho expression through increased protein degradation and decreased transcription mediated by ER stress induction. This implies that modulating ER stress may improve proteinuria‐induced alterations of Klotho expression, and hence renal and extrarenal complications associated with Klotho loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.