For many applications in graphics, design, and human computer interaction, it is essential to understand where humans look in a scene. Where eye tracking devices are not a viable option, models of saliency can be used to predict fixation locations. Most saliency approaches are based on bottom-up computation that does not consider top-down image semantics and often does not match actual eye movements. To address this problem, we collected eye tracking data of 15 viewers on 1003 images and use this database as training and testing examples to learn a model of saliency based on low, middle and high-level image features. This large database of eye tracking data is publicly available with this paper.
We present a new technique for the display of high-dynamic-range images, which reduces the contrast while preserving detail. It is based on a two-scale decomposition of the image into a base layer, encoding large-scale variations, and a detail layer. Only the base layer has its contrast reduced, thereby preserving detail. The base layer is obtained using an edge-preserving filter called the bilateral filter. This is a non-linear filter, where the weight of each pixel is computed using a Gaussian in the spatial domain multiplied by an influence function in the intensity domain that decreases the weight of pixels with large intensity differences. We express bilateral filtering in the framework of robust statistics and show how it relates to anisotropic diffusion. We then accelerate bilateral filtering by using a piecewise-linear approximation in the intensity domain and appropriate subsampling. This results in a speed-up of two orders of magnitude. The method is fast and requires no parameter setting.
In blind deconvolution one aims to estimate from an input blurred image y a sharp image x and an unknown blur kernel k.
The bilateral filter is a nonlinear filter that smoothes a signal while preserving strong edges.It has demonstrated great effectiveness for a variety of problems in computer vision and computer graphics, and fast versions have been proposed. Unfortunately, little is known about the accuracy of such accelerations. In this paper, we propose a new signal-processing analysis of the bilateral filter which complements the recent studies that analyzed it as a PDE or as a robust statistical estimator. The key to our analysis is to express the filter in a higher-dimensional space where the signal intensity is added to the original domain dimensions. Importantly, this signal-processing perspective allows us to develop a novel bilateral filtering acceleration using downsampling in space and intensity. This affords a principled expression of accuracy in terms of bandwidth and sampling. The bilateral filter can be expressed as linear convolutions in this augmented space followed by two simple nonlinearities. This allows us to derive criteria for downsampling the key operations and achieving important acceleration of the bilateral filter. We show that, for the same running time, our method is more accurate than previous acceleration techniques. Typically, we are able to process a 2 megapixel image using our acceleration technique in less than a second, and have the result be visually similar to the exact computation that takes several tens of minutes.The acceleration is most effective with large spatial kernels. Furthermore, this approach extends naturally to color images and cross bilateral filtering.
and output (bottom) videos plotted over time shows how our method amplifies the periodic color variation. In the input sequence the signal is imperceptible, but in the magnified sequence the variation is clear. The complete sequence is available in the supplemental video. AbstractOur goal is to reveal temporal variations in videos that are difficult or impossible to see with the naked eye and display them in an indicative manner. Our method, which we call Eulerian Video Magnification, takes a standard video sequence as input, and applies spatial decomposition, followed by temporal filtering to the frames. The resulting signal is then amplified to reveal hidden information. Using our method, we are able to visualize the flow of blood as it fills the face and also to amplify and reveal small motions. Our technique can run in real time to show phenomena occurring at temporal frequencies selected by the user.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.