Hormone-sensitive lipase (HSL) is known to mediate the hydrolysis not only of triacylglycerol stored in adipose tissue but also of cholesterol esters in the adrenals, ovaries, testes, and macrophages. To elucidate its precise role in the development of obesity and steroidogenesis, we generated HSL knockout mice by homologous recombination in embryonic stem cells. Mice homozygous for the mutant HSL allele (HSL؊͞؊) were superficially normal except that the males were sterile because of oligospermia. HSL؊͞؊ mice did not have hypogonadism or adrenal insufficiency. Instead, the testes completely lacked neutral cholesterol ester hydrolase (NCEH) activities and contained increased amounts of cholesterol ester. Many epithelial cells in the seminiferous tubules were vacuolated. NCEH activities were completely absent from both brown adipose tissue (BAT) and white adipose tissue (WAT) in HSL؊͞؊ mice. Consistently, adipocytes were significantly enlarged in the BAT (5-fold) and, to a lesser extent in the WAT (2-fold), supporting the concept that the hydrolysis of triacylglycerol was, at least in part, impaired in HSL؊͞؊ mice. The BAT mass was increased by 1.65-fold, but the WAT mass remained unchanged. Discrepancy of the size differences between cell and tissue suggests the heterogeneity of adipocytes. Despite these morphological changes, HSL؊͞؊ mice were neither obese nor cold sensitive. Furthermore, WAT from HSL؊͞؊ mice retained 40% of triacylglycerol lipase activities compared with the wild-type WAT. In conclusion, HSL is required for spermatogenesis but is not the only enzyme that mediates the hydrolysis of triacylglycerol stored in adipocytes.
Lipid droplets (LDs) are intracellular organelles that store neutral lipids within cells. Over the last two decades there has been a dramatic growth in our understanding of LD biology and, in parallel, our understanding of the role of LDs in health and disease. In its simplest form, the LD regulates the storage and hydrolysis of neutral lipids, including triacylglycerol and/or cholesterol esters. It is becoming increasingly evident that alterations in the regulation of LD physiology and metabolism influence the risk of developing metabolic diseases such as diabetes. In this review we provide an update on the role of LD-associated proteins and LDs in metabolic disease. Overview of lipid dropletsLipid droplets (LDs) are intracellular organelles that store neutral lipids within cells. Over the last two decades there has been a dramatic growth in our understanding of LD biology and, in parallel, our understanding of the role they play in health and disease. LDs regulate the storage and hydrolysis of neutral lipids, including triacylglycerol (TAG) and/or cholesterol esters. For example, adipocytes, the major reservoir of TAG in the body, store their TAG within LDs, and TAG storage in adipocytes is increased in obese animals and humans. The rates of adipocyte lipolysis in many obese individuals are constitutively increased, resulting in elevated levels of circulating fatty acids, which may be stored as TAG in LDs within skeletal muscle and liver. Both local and circulating free fatty acids are thought to be important etiologic agents in the development of insulin resistance, hyperlipidemia, inflammation, and hepatic steatosis (1-3). In this article, we will briefly review the basic characteristics of LDs and then focus on our present knowledge of the current view of the role of LDs in metabolic disease.Cells have developed the capacity to store fatty acids as neutral lipids within LDs for several reasons. An important role of LDs in adipocytes is to store fatty acids as TAG to serve as a reservoir of energetic substrates that can be released when food is scarce. The detrimental effects associated with excess fatty acid entry into cells are often termed "lipotoxicity." Cells protect themselves from these effects by either oxidizing the fatty acids or sequestering them as TAG within LDs. Consistent with this hypothesis, activation of PPARα, which increases the expression of genes that encode oxidative proteins, also increases the expression of LDs and LD-associated proteins (4, 5). PPARγ and PPARδ, along with other transcription factors, can also promote droplet formation (4, 6). As noted above, when fatty acids exceed the oxidative capacity of cells, they not only enhance LD formation, but may also induce apoptosis. An example of the protection LD formation provides was demonstrated in an experiment in which exogenous oleic acid added to fibroblasts deficient in diacylglycerol acyltransferase 1 (DGAT1) promoted lipotoxic cell death. Expression of DGAT1, the terminal step in TAG synthesis, in fibroblasts channeled exces...
Hormone-sensitive lipase (HSL) is the predominant lipase effector of catecholamine-stimulated lipolysis in adipocytes. HSL-dependent lipolysis in response to catecholamines is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin A (Peri A), an essential lipid droplet (LD)-associated protein.It is believed that perilipin phosphorylation is essential for the translocation of HSL from the cytosol to the LD, a key event in stimulated lipolysis. Using adipocytes retrovirally engineered from murine embryonic fibroblasts of perilipin null mice (Peri؊/؊ MEF), we demonstrate by cell fractionation and confocal microscopy that up to 50% of cellular HSL is LD-associated in the basal state and that PKA-stimulated HSL translocation is fully supported by adenoviral expression of a mutant perilipin lacking all six PKA sites (Peri A⌬1-6). PKA-stimulated HSL translocation was confirmed in differentiated brown adipocytes from perilipin null mice expressing an adipose-specific Peri A⌬1-6 transgene. Thus, PKA-induced HSL translocation was independent of perilipin phosphorylation. However, Peri A⌬1-6 failed to enhance PKA-stimulated lipolysis in either MEF adipocytes or differentiated brown adipocytes. Thus, the lipolytic action(s) of HSL at the LD surface requires PKA-dependent perilipin phosphorylation. In Peri؊/؊ MEF adipocytes, PKA activation significantly enhanced the amount of HSL that could be cross-linked to and co-immunoprecipitated with ectopic Peri A. Notably, this enhanced cross-linking was blunted in Peri؊/؊ MEF adipocytes expressing Peri A⌬1-6. This suggests that PKA-dependent perilipin phosphorylation facilitates (either direct or indirect) perilipin interaction with LD-associated HSL. These results redefine and expand our understanding of how perilipin regulates HSL-mediated lipolysis in adipocytes.The enzymatic hydrolysis of stored neutral lipid in adipocytes is an exquisitely regulated process that maintains whole body energy homeostasis in response to physiological demands. In both white and brown adipose tissue (BAT) 4 basal (constitutive) rates of adipocyte lipolysis are rapidly and dramatically up-regulated by lipolytic hormones such as catecholamines (1, 2). In white adipose tissue, catecholamine-induced lipolysis provides fatty acids as fuel to peripheral tissues during times of energy need, such as fasting and exercise (3-5). In BAT of human newborns and rodents, catecholamine-stimulated lipolysis provides fatty acids for heat production (via -oxidation and mitochondrial uncoupling) in response to hypothermia (i.e. adaptive thermogenesis) (2, 6). Fatty acids that are released during adipocyte lipolysis also function as modulators of glucose and insulin action and insulin production (7,8). Moreover, the dysregulated release of fatty acids from adipocytes that occurs in obesity is implicated in the etiology of obesity-related complications, including type 2 diabetes (8 -10). Thus, in addition to its role in whole body energy homeostasis, the regulation of adipocyte lipolysis is vital to me...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.