BackgroundThe influence of the blood glucose level on the tracer uptake of normal tissues at [18F]-2-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) was retrospectively studied in examinations in clinical patients.MethodsFive hundred examinations were evaluated in retrospect. The inclusion criteria were studies with a normal or near-normal FDG distribution. Patients who had been subjected to chemotherapy (including GSF treatment) or radiotherapy <4 weeks prior to the examination were excluded; we cannot exclude, however, that in a very few patients the available information might have been incomplete. Otherwise, patients were included regardless of concurrent diseases and/or therapy. In one evaluation, the mean standardized uptake value of the liver, spleen, lungs, peripheral blood, selected muscles and bone marrow of all 500 individuals was correlated to the blood glucose level. In another evaluation, a subgroup of 62 patients with increased blood glucose levels (≥7.0 mmol/l) was compared with another subgroup of 62 patients paired with regard to age and gender with blood glucose levels within normal range (≤6.0 mmol/l).ResultsThere was a weak positive correlation between the blood glucose level and the muscular uptake of FDG, while there was no correlation with the tracer uptake of the liver, spleen, lungs, peripheral blood or bone marrow. The patient group with increased blood glucose levels showed a slightly, but significantly, higher muscular FDG uptake compared with the matched subgroup of patients with normal blood glucose levels. When comparing the other assessed tissues/organs, there were no differences between these two patient groups.ConclusionsThe effect of hyperglycaemia at FDG PET on the studied normal tissues is restricted to a slightly increased muscular uptake. The effect of the blood glucose level on the blood activity at the time of examination is negligible.
Specific biological markers for autism spectrum disorder (ASD) have not yet been established. Functional studies have shown abnormalities in the anatomo-functional connectivity of the limbic-striatal "social" brain. This study aimed to investigate regional cerebral blood flow (rCBF) at rest. Thirteen patients with ASD of normal intelligence and ten IQ-, sex- and age-matched healthy controls (HC) underwent PET/CT using [1-(11)C]butanol, a perfusion tracer. As compared to HC, ASD showed significant CBF increases in the right parahippocampal, posterior cingulate, primary visual and temporal cortex, putamen, caudatus, substantia nigra and cerebellum. No statistically significant correlation between CBF and IQ was found. The limbic, posterior associative and cerebellar cortices showed increased blood flow in ASD, confirming previous findings about the neurobiology of ASD.
With Na(18)F PET/CT, it was possible to confirm regional bone turnover as a means of visualizing bone remodeling without the interference of artifacts from the Taylor spatial frame. Furthermore, dynamic list-mode acquisition allowed different sequences to be performed, enabling, for example, visualization of tracer transport from blood to the fracture site.
Objective: SUVmax is often calculated at FDG PET examinations in systematic studies as well as at clinical examinations. Since SUVmax represents a very small portion of a lesion it may be questioned how statistically reliable the figure is. This was studied by assessing the repeatability of SUVmax between two FDG acquisitions acquired immediately upon each other in patients with chest lesions.Methods: In 100 clinical patients with a known chest lesion, two identical 3 min PET registrations (PET1 and PET2, respectively) were initiated within 224±31 sec of each other. The difference in SUVmax between the lesion for the two PET scans (ΔSUVmax) was calculated and the uncertainty expressed as the coefficient of variation, CV (%). The correlation between ΔSUVmax and the lowest SUVmax from PET1 or PET2, the approximate metabolic lesion volume, the time from FDG injection to PET1 and the time between PET1 and PET2, respectively, was also assessed.Results: In 56 patients SUVmax increased at the second acquisition and in 44 patients it decreased. Mean of SUVmax was 7.8±6.1 and 7.8±6.2 for PET1 and PET2, respectively. The mean percentage difference was 0.9±7.8. The difference was not significant (p=0.20). CV gave an uncertainty of 4.3% between the two measurements which is a strong indicator of equivalence. There was no correlation between ΔSUVmax and any of the assessed four parameters. The difference between the acquisitions, 0.9%, was much lower compared to the 3 previous published similar, but more restricted studies where the difference was 2.5-8.2%.Conclusion: From camera and computational perspectives, SUVmax is a stable parameterConflict of interest:None declared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.