Mountain areas often hold special species communities, and they are high on the list of conservation concern. Global warming and changes in human land use, such as grazing pressure and afforestation, have been suggested to be major threats for biodiversity in the mountain areas, affecting species abundance and causing distribution shifts towards mountaintops. Population shifts towards poles and mountaintops have been documented in several areas, indicating that climate change is one of the key drivers of species’ distribution changes. Despite the high conservation concern, relatively little is known about the population trends of species in mountain areas due to low accessibility and difficult working conditions. Thanks to the recent improvement of bird monitoring schemes around Europe, we can here report a first account of population trends of 44 bird species from four major European mountain regions: Fennoscandia, UK upland, south‐western (Iberia) and south‐central mountains (Alps), covering 12 countries. Overall, the mountain bird species declined significantly (−7%) during 2002–2014, which is similar to the declining rate in common birds in Europe during the same period. Mountain specialists showed a significant −10% decline in population numbers. The slope for mountain generalists was also negative, but not significantly so. The slopes of specialists and generalists did not differ from each other. Fennoscandian and Iberian populations were on average declining, while in United Kingdom and Alps, trends were nonsignificant. Temperature change or migratory behaviour was not significantly associated with regional population trends of species. Alpine habitats are highly vulnerable to climate change, and this is certainly one of the main drivers of mountain bird population trends. However, observed declines can also be partly linked with local land use practices. More efforts should be undertaken to identify the causes of decline and to increase conservation efforts for these populations.
Speciation by hybridization is emerging as a significant contributor to biological diversification. Yet, little is known about the relative contributions of (i) evolutionary novelty and (ii) sorting of pre-existing parental incompatibilities to the build-up of reproductive isolation under this mode of speciation. Few studies have addressed empirically whether hybrid animal taxa are intrinsically isolated from their parents, and no study has so far investigated by which of the two aforementioned routes intrinsic barriers evolve. Here, we show that sorting of pre-existing parental incompatibilities contributes to intrinsic isolation of a hybrid animal taxon. Using a genomic cline framework, we demonstrate that the sex-linked and mitonuclear incompatibilities isolating the homoploid hybrid Italian sparrow at its two geographically separated hybrid-parent boundaries represent a subset of those contributing to reproductive isolation between its parent species, house and Spanish sparrows. Should such a sorting mechanism prove to be pervasive, the circumstances promoting homoploid hybrid speciation may be broader than currently thought, and indeed, there may be many cryptic hybrid taxa separated from their parent species by sorted, inherited incompatibilities.
The all black carrion crow (Corvus corone corone) and the grey and black hooded crow (Corvus corone cornix) meet in a narrow hybrid zone across Europe. To evaluate the degree of genetic differentiation over the hybrid zone, we genotyped crows from the centre and edges of the zone, and from allopatric populations in northern (Scotland-Denmark-Sweden) and southern Europe (western-central northern Italy), at 18 microsatellites and at a plumage candidate gene, the MC1R gene. Allopatric and edge populations were significantly differentiated on microsatellites, and populations were isolated by distance over the hybrid zone in Italy. Single-locus analyses showed that one locus, CmeH9, differentiated populations on different sides of the zone at the same time as showing only weak separation of populations on the same side of the zone. Within the hybrid zone there was no differentiation of phenotypes at CmeH9 or at the set of microsatellites, no excess of heterozygotes among hybrids and low levels of linkage disequilibrium between markers. We did not detect any association between phenotypes and nucleotide variation at MC1R, and the two most common haplotypes occurred in very similar frequencies in carrion and hooded crows. That we found a similar degree of genetic differentiation between allopatric and edge populations irrespectively of their location in relation to the hybrid zone, no differentiation between phenotypes within the hybrid zone, and neither heterozygote excess nor consistent linkage disequilibrium in the hybrid zone, is striking considering that carrion and hooded crows are phenotypically distinct and sometimes recognised as separate species.
In hybrid zones genetically differentiated populations meet and interbreed. As they result from ongoing divergence and potential speciation, such zones provide opportunities to study how different factors affect this process. One well‐known avian hybrid zone is that between the Hooded Crow Corvus corone cornix and Carrion Crow C. c. corone, which extends throughout much of Europe. We compare the current position and width of the zone in southern Denmark and northern Germany with that described in detail by Meise in 1928. A GPS technique was used to determine the geographical position of more than 1000 Crows in established pairs in which all individuals were classified as either Carrion, Hooded or hybrid phenotype. The data show that the Carrion Crow has expanded northwards and that this is most pronounced at the eastern side of the study area. Here the hybrid zone has moved around 19 km. However, the width of the zone seems to have remained stable over time. Possible reasons for why the zone may have moved are discussed.
Sperm performance is likely to be an important determinant of male reproductive success, especially when females copulate with multiple males. Understanding sperm performance is therefore crucial to fully understand the evolution of male reproductive strategies. In this study, we examined the repeatability of sperm morphology and motility measures over three breeding seasons, and we studied relationships between sperm morphology and function. We conducted this study in wild-derived captive house sparrows (Passer domesticus) and Spanish sparrows (P. hispaniolensis). Results for the two species were similar. As predicted from results in other passerine species, total sperm length was highly repeatable across ejaculates, and repeatability for the length of other components was moderate. The repeatability of sperm swimming speed across ejaculates was lower, but statistically significant, suggesting that sperm velocity may be a relatively dynamic trait. Surprisingly, swimming speed did not correlate with the relative length of the midpiece, and it correlated negatively with the relative length of the flagellum and with total sperm length. This pattern is the opposite of what theory predicts and differs from what has been found in house sparrows before. Also contrary to previous work, we found no evidence that total sperm length correlates with sperm longevity. These results therefore highlight the need for a better understanding of relationships between sperm morphology and function in passerine birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.