We use large-scale Monte Carlo computations to study the phase transitions between a two-component chiral p-wave superconductor and normal state in zero external magnetic field. We find a first-order phase transition from the normal state to a chiral superconducting state, due to interplay between vortices and domain walls.
We use large-scale Monte-Carlo simulations to study thermal fluctuations in chiral p-wave superconductors in an applied magnetic field in three dimensions. We consider the thermal stability of previously predicted unusual double-quanta flux-line lattice ground states in such superconductors. In previous works it was shown that, neglecting thermal fluctuations, a chiral p-wave superconductor forms a hexagonal lattice of doubly-quantized vortices, except extremely close to the vicinity of H c2 where double-quanta vortices split apart. We find dissociation of double-quanta vortices driven by thermal fluctuations. However, our calculations also show that the previous predictions of hexagonal doubly-quantized vortices, where thermal fluctuations were ignored, are very robust in the considered model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.