Purpose Cranio-maxillofacial (CMF) surgery to restore normal skeletal anatomy in patients with serious trauma to the face can be both complex and time-consuming. But it is generally accepted that careful pre-operative planning leads to a better outcome with a higher degree of function and reduced morbidity in addition to reduced time in the operating room. However, today’s surgery planning systems are primitive, relying mostly on the user’s ability to plan complex tasks with a two-dimensional graphical interface. Methods A system for planning the restoration of skeletal anatomy in facial trauma patients using a virtual model derived from patient-specific CT data. The system combines stereo visualization with six degrees-of-freedom, high-fidelity haptic feedback that enables analysis, planning, and preoperative testing of alternative solutions for restoring bone fragments to their proper positions. The stereo display provides accurate visual spatial perception, and the haptics system provides intuitive haptic feedback when bone fragments are in contact as well as six degrees-of-freedom attraction forces for precise bone fragment alignment. Results A senior surgeon without prior experience of the system received 45 min of system training. Following the training session, he completed a virtual reconstruction in 22 min of a complex mandibular fracture with an adequately reduced result. Conclusion Preliminary testing with one surgeon indicates that our surgery planning system, which combines stereo visualization with sophisticated haptics, has the potential to become a powerful tool for CMF surgery planning. With little training, it allows a surgeon to complete a complex plan in a short amount of time.
Purpose
The management of complex mandible fractures, i.e. severely comminuted or fractures of edentulous/atrophic mandibles, can be challenging. This is due to the three-dimensional loss of bone, which limits the possibility for accurate anatomic reduction. Virtual surgery planning (VSP) can provide improved accuracy and shorter operating times, but is often not employed for trauma cases because of time constraints and complex user interfaces limited to two-dimensional interaction with three-dimensional data.
Methods
In this study, we evaluate the accuracy, precision, and time efficiency of the haptic assisted surgery planning system (HASP), an in-house VSP system that supports stereo graphics, six degrees-of-freedom input, and haptics to improve the surgical planning. Three operators performed planning in HASP on computed tomography (CT) and cone beam computed tomography (CBCT) images of a plastic skull model and on twelve retrospective cases with complex mandible fractures.
Results
The results show an accuracy and reproducibility of less than 2 mm when using HASP for virtual fracture reduction, with an average planning time of 15 min including time for segmentation in the software BoneSplit.
Conclusion
This study presents an in-house haptic assisted planning tool for cranio-maxillofacial surgery with high usability that can be used for preoperative planning and evaluation of complex mandible fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.