Urea complex formation is a classic method for fractionating fatty acids from seed and other oils. The method's simplicity, ease of scaling, and ecological friendliness suggest its reevaluation in regard to modern fractionation challenges. In keeping with this, a simple, quick, inexpensive, robust, and environmentally friendly procedure was developed for reducing the saturated free fatty acid (FFA) content of saponified low-erucic acid rapeseed oil (LEAR). The process involves formation of a homogeneous 65°C solution of FFA and urea in 95% ethanol (5% water), followed by cooling of the resultant urea complex slurry to room temperature. The urea complex and liquid phases are separated by gravity filtration, and the urea isolated in each phase is removed by extraction with 60°C water. Saturated LEAR oil FFA preferentially formed urea complexes easily separated from the noncomplexed, mostly unsaturated FFA, the main product of interest. The effects of single-vs. double-stage fractionations and several other variables (component mass or volume ratios, temperature, ethanol solvent to water ratio) were preliminarily evaluated. Results demonstrated the robustness, reproducibility, and simplicity of the method.
A linear-stability analysis is performed on a vertical falling film with a surface-active solute. It is assumed in the present model that the surfactant is soluble and volatile. In addition to the surface wave mode and the ‘wall wave’ mode which originate from the gravity-driven flow of the falling film itself, a new mode of instability related to the Marangoni effect induced by surface tension gradients is found for low Reynolds numbers and for moderate- or short-wavelength disturbances. The new mode is thought to be analogous to the thermocapillary instability examined first by Pearson (1958). The Marangoni instability of large-wavelength disturbances, revealed by Goussis & Kelly (1990) in a study of a liquid layer heated from below, may be completely suppressed in the present system by the effect of surface-excess concentration of the surfactant. The influence of the desorption of the solute and of its adsorption at the gas-liquid interface is determined for both the surface wave mode and the new wave mode. Desorption of the surfactant is shown to be responsible for the Marangoni instability of the new mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.