In this paper, the water uptake and diffusion of water through ion-selective membranes based on plasticized poly(vinyl chloride) (PVC) have been studied by FTIR-ATR spectroscopy. The diffusion of water was modeled by the finite-difference method and the obtained diffusion coefficients are reported for membranes plasticized with bis(2-ethylhexyl) sebacate (DOS) and 2-nitrophenyl octyl ether (oNPOE). The influence of various common membrane additives such as lipophilic salts and ionophores on the water uptake was also determined through representative membrane formulations (potassium tetrakis [3,5-bis(trifluoromethyl)phenyl]borate (KTFPB) and/or calcium ionophore IV (ETH 5234)). The best fits of the time dependent water concentration changes in the membrane upon water uptake were obtained with a model consisting of two diffusion coefficients describing fast (ca. 1.5 Â 10 À7 cm 2 s À1) and slow (ca. 9.5 Â 10 À9 cm 2 s À1 ) diffusion of water in the PVC membranes. In contrast to the water uptake of the membranes, the diffusion rates were found to be practically independent of the membrane composition. It is shown that KTFPB and ETH 5234 decrease the water uptake whereas it is facilitated by a higher plasticizer content of the membrane. Monomeric, dimeric, clustered and bulk water could be distinguished by deconvolution of the FTIR-ATR spectra, which is important for understanding the water uptake mechanism.
For the first time, FTIR-ATR spectroscopy was used to study the water uptake and its diffusion in ion-selective membranes (ISMs) based on poly(acrylates) (PAs) and silicone rubber (SR), which are emerging materials for the fabrication of ISMs for ultratrace analysis. Three different types of PA membranes were studied, consisting of copolymers of methyl methacrylate with n-butyl acrylate, decyl methacrylate, or isodecyl acrylate. Numerical simulations with the finite difference method showed that in most cases the water uptake of the PA and SR membranes could be described with a model consisting of two diffusion coefficients. The diffusion coefficients of the PA membranes were approximately 1 order of magnitude lower than those of plasticized poly(vinyl chloride) (PVC)-based ISMs and only slightly influenced by the membrane matrix composition. However, the simulations indicated that during longer contact times, the water uptake of PA membranes was considerably higher than that for plasticized PVC membranes. Although the diffusion coefficients of the SR and plasticized PVC membranes were similar, the SR membranes had the lowest water uptake of all membranes. This can be beneficial in preventing the formation of detrimental water layers in all-solid-state ion-selective electrodes. With FTIR-ATR, one can monitor the accumulation of different forms of water, i.e., monomeric, dimeric, clustered, and bulk water.
A novel design and fabrication procedure is proposed for the preparation of robust ionophore based ion-selective microelectrodes. The essential component of the new design is a microcavity that is formed after recessing a voltammetric inlaid disk type gold microelectrode by chemical etching of the gold microwire. The microcavity of ca. 50 pL volume and 25 mm diameter accommodates the inherently conducting polymeric inner contact and the ionselective liquid membrane, which are thereby mechanically protected from the sample environment. As inner contacts poly(3,4-ethylenedioxythiophene) (PEDOT) films doped with poly(4-styrenesulfonate) (PSS) and tetrakis [3,5-bis-(trifluoromethyl)phenyl]borate (TFPB) electropolymerized from aqueous and organic solvents, respectively, were used. Potassium-and calcium-selective microelectrodes fabricated according to the new procedure exhibited potentiometric characteristics similar to the conventional electrodes. The formation of an aqueous layer below the ion-selective membrane could be avoided by using the proposed electrode construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.