OrthoDB (https://www.orthodb.org) provides evolutionary and functional annotations of orthologs. This update features a major scaling up of the resource coverage, sampling the genomic diversity of 1271 eukaryotes, 6013 prokaryotes and 6488 viruses. These include putative orthologs among 448 metazoan, 117 plant, 549 fungal, 148 protist, 5609 bacterial, and 404 archaeal genomes, picking up the best sequenced and annotated representatives for each species or operational taxonomic unit. OrthoDB relies on a concept of hierarchy of levels-of-orthology to enable more finely resolved gene orthologies for more closely related species. Since orthologs are the most likely candidates to retain functions of their ancestor gene, OrthoDB is aimed at narrowing down hypotheses about gene functions and enabling comparative evolutionary studies. Optional registered-user sessions allow on-line BUSCO assessments of gene set completeness and mapping of the uploaded data to OrthoDB to enable further interactive exploration of related annotations and generation of comparative charts. The accelerating expansion of genomics data continues to add valuable information, and OrthoDB strives to provide orthologs from the broadest coverage of species, as well as to extensively collate available functional annotations and to compute evolutionary annotations. The data can be browsed online, downloaded or assessed via REST API or SPARQL RDF compatible with both UniProt and Ensembl.
OrthoDB is a comprehensive catalog of orthologs, genes inherited by extant species from a single gene in their last common ancestor. In 2016 OrthoDB reached its 9th release, growing to over 22 million genes from over 5000 species, now adding plants, archaea and viruses. In this update we focused on usability of this fast-growing wealth of data: updating the user and programmatic interfaces to browse and query the data, and further enhancing the already extensive integration of available gene functional annotations. Collating functional annotations from over 100 resources, and enabled us to propose descriptive titles for 87% of ortholog groups. Additionally, OrthoDB continues to provide computed evolutionary annotations and to allow user queries by sequence homology. The OrthoDB resource now enables users to generate publication-quality comparative genomics charts, as well as to upload, analyze and interactively explore their own private data. OrthoDB is available from http://orthodb.org.
The concept of orthology provides a foundation for formulating hypotheses on gene and genome evolution, and thus forms the cornerstone of comparative genomics, phylogenomics and metagenomics. We present the update of OrthoDB—the hierarchical catalog of orthologs (http://www.orthodb.org). From its conception, OrthoDB promoted delineation of orthologs at varying resolution by explicitly referring to the hierarchy of species radiations, now also adopted by other resources. The current release provides comprehensive coverage of animals and fungi representing 252 eukaryotic species, and is now extended to prokaryotes with the inclusion of 1115 bacteria. Functional annotations of orthologous groups are provided through mapping to InterPro, GO, OMIM and model organism phenotypes, with cross-references to major resources including UniProt, NCBI and FlyBase. Uniquely, OrthoDB provides computed evolutionary traits of orthologs, such as gene duplicability and loss profiles, divergence rates, sibling groups, and now extended with exon–intron architectures, syntenic orthologs and parent–child trees. The interactive web interface allows navigation along the species phylogenies, complex queries with various identifiers, annotation keywords and phrases, as well as with gene copy-number profiles and sequence homology searches. With the explosive growth of available data, OrthoDB also provides mapping of newly sequenced genomes and transcriptomes to the current orthologous groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.