Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.
A method is reported by which calculated hyperfine coupling constants (HFCCs) and paramagnetic NMR (pNMR) chemical shifts can be analyzed in a chemically intuitive way by decomposition into contributions from localized molecular orbitals (LMOs). A new module for density functional calculations with nonhybrid functionals, global hybrids, and range-separated hybrids, utilizing the two-component relativistic zeroth-order regular approximation (ZORA), has been implemented in the parallel open-source NWChem quantum chemistry package. Benchmark results are reported for a test set of few-atom molecules with light and heavy elements. Finite nucleus effects on (199)Hg HFCCs are shown to be on the order of -11 to -15%. A proof of concept for the LMO analysis is provided for the metal and fluorine HFCCs of TiF3 and NpF6. Calculated pNMR chemical shifts are reported for the 2-methylphenyl-t-butylnitroxide radical and for five cyclopentadienyl (Cp) sandwich complexes with 3d metals. Nickelocene and vanadocene carbon pNMR shifts are analyzed in detail, demonstrating that the large carbon pNMR shifts calculated as +1540 for Ni (exptl.: +1514) and -443 for V (exptl.: -510) are caused by different spin-polarization mechanisms. For Ni, Cp to Ni π back-donation dominates the result, whereas for vanadocene, V to Cp σ donation with relaxation of the carbon 1s shells can be identified as the dominant mechanism.
Density functional theory (DFT) calculations of NMR chemical shifts and molecular g tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X = F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po) and (125)Te chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting (19)F NMR shielding in UF6-nCln, n = 1-6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs correlation. For the uranium halides, the range-separated functionals are not clearly superior to global hybrids.
An implementation of a four-component density corrected approach for calculations of nuclear electric field gradients (EFGs) in molecules based on the two-component relativistic zeroth-order regular approximation (ZORA) is reported. The program module, which is part of the NWChem package, allows for scalar and spin-orbit relativistic computations of EFGs. Benchmark density functional calculations are reported for a large set of main group diatomic molecules, a set of Cu and Au diatomics, several Ru and Nb complexes, the free uranyl ion, and two uranyl carbonate complexes. Data obtained from nonhybrid as well as fixed and range-separated hybrid functionals are compared. To allow for a chemically intuitive interpretation of the results, a breakdown of the EFGs of selected systems in terms of localized molecular orbitals is given. For CuF, CuCl, AuCl, UO2(2+), and a uranyl carbonate complex, the localized orbital decomposition demonstrates in particular the role of the valence metal d and f shells, respectively, and leads to rather compact analyses. For f orbitals, a Townes-Dailey-like model is set up to assist the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.