The assembly of donor-acceptor molecules via charge transfer (CT) interactions give rise to highly ordered nanomaterials with appealing electronic properties. Here, we present the synthesis and bulk co-assembly of pyrene...
Dissipative chemical systems hold the potential to enable life‐like behavior in synthetic matter, such as self‐organization, motility, and dynamic switching between different states. Here, out‐of‐equilibrium self‐organization is demonstrated by interconnected source and drain droplets at an air‐water interface, which display dynamic behavior due to a hydrolysis reaction that generates a concentration gradient around the drain droplets. This concentration gradient interferes with the adhesion of self‐assembled amphiphile filaments that grow from a source droplet. The chemical gradient sustains a unique orbiting of the drain droplet, which is proposed to be driven by the selective adhesion of the filaments to the front of the moving droplet, while filaments approaching from behind are destabilized upon contact with the hydrolysis product in the trail of the droplet. Potential applications are foreseen in the transfer of chemical signals amongst communicating droplets in rearranging networks, and the implementation of chemical reactions to drive complex positioning routines in life‐like systems.
Amplification of asymmetry in complex molecular systems results from a delicate interplay of chiral supramolecular structures and their chemical reactivity. In this work, we show how the helicity of supramolecular assemblies can be controlled by performing a non-stereoselective methylation reaction on comonomers. By methylating chiral glutamic acid side chains in benzene-1,3,5-tricarboxamide (BTA) derivatives to form methyl esters, the assembly properties are modulated. As reacted comonomers, the methyl ester-BTAs induce a stronger bias in the screw-sense of helical fibers predominantly composed of stacked achiral alkyl-BTA monomers. Hence, applying the in situ methylation in a system with the glutamic acid-BTA comonomer induces asymmetry amplification. Moreover, mixing small quantities of enantiomers of glutamic acid-BTA and glutamate methyl ester-BTA in the presence of the achiral alkyl-BTAs leads to deracemization and inversion of the helical structures in solution via the in situ reaction toward a thermodynamic equilibrium. Theoretical modeling suggests that the observed effects are caused by enhanced comonomer interactions after the chemical modification. Our presented methodology enables on-demand control over asymmetry in ordered functional supramolecular materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.