The directed cell migration towards a chemotactic source, chemotaxis, involves three complex and interrelated processes: directional sensing, cell polarization and motility. Directional sensing allows migrating eukaryotic cells to chemotax in extremely shallow gradients (<2% across the cell body) of the chemoattractant. Although directional sensing has been observed as spatially restricted responses along the plasma membrane, our understanding of the `compass' of the cell that controls the gradient-induced translocation of proteins during chemotactic movements is still largely lacking. Until now, the dynamical behaviour and mobility of the chemoattractant-receptor molecule has been neglected in models describing the directional sensing mechanisms. Here, we show by single-molecule microscopy an agonist-induced increase in the mobile fraction of cAMP-receptor at the leading edge of chemotacting Dictyostelium discoideum cells. The onset of receptor mobility was correlated to the uncoupling and activation of the Gα2-protein. A finite-element simulation showed that the increase in mobile fraction of the activated receptor enabled the amplified generation of activated Gβγ-dimers at the leading edge of the cell, faithfully representing a primary linear amplification step in directional sensing. We propose here that modulation of the receptor mobility is directly involved in directional sensing and provides a new mechanistic basis for the primary amplification step in current theoretical models that describe directional sensing.
Receptor internalization upon ligand stimulation is a key component of a cell's response and allows a cell to correctly sense its environment. Novel fluorescent methods have enabled the direct visualization of the agonist-stimulated G-protein-coupled receptors (GPCR) trafficking in living cells. However, it is difficult to observe internalization of GPCRs in vivo due to intrinsic autofluorescence and cytosolic signals of fluorescently labeled GPCRs. This study uses the superior positional accuracy of single-molecule fluorescence microscopy to visualize in real time the internalization of Dictyostelium discoideum cAMP receptors, cAR1, genetically encoded with eYFP. This technique made it possible to follow the number of receptors in time revealing that the fraction of cytosolic receptors increases after persistent agonist stimulation and that the majority of the receptors were degraded after internalization. The observed internalization process was phosphorylation dependent, as shown with the use of a phosphorylation deficient cAR1 mutant, cm1234-eYFP, or stimulation with an antagonist, Rp-cAMPS that does not induce receptor phosphorylation. Furthermore, experiments done in mound-stage cells suggest that intrinsic, phosphorylation-induced internalization of cAR1 is necessary for Dictyostelium wild type cells to progress properly through multicellular development. To our knowledge, this observation illustrates for the first time phosphorylation-dependent internalization of single cAR1 molecules in living cells and its involvement in multicellular development. This very sensitive imaging of receptor internalization can be a useful and universal approach for pharmacological characterization of GPCRs in other cell types.
Sequencing the genomes of individual cells enables the direct determination of genetic heterogeneity amongst cells within a population. We have developed an injection-moulded valveless microfluidic device in which single cells from colorectal cancer derived cell lines (LS174T, LS180 and RKO) and fresh colorectal tumors have been individually trapped, their genomes extracted and prepared for sequencing using multiple displacement amplification (MDA). Ninety nine percent of the DNA sequences obtained mapped to a reference human genome, indicating that there was effectively no contamination of these samples from non-human sources. In addition, most of the reads are correctly paired, with a low percentage of singletons (0.17 ± 0.06%) and we obtain genome coverages approaching 90%. To achieve this high quality, our device design and process shows that amplification can be conducted in microliter volumes as long as the lysis is in sub-nanoliter volumes. Our data thus demonstrates that high quality whole genome sequencing of single cells can be achieved using a relatively simple, inexpensive and scalable device. Detection of genetic heterogeneity at the single cell level, as we have demonstrated for freshly obtained single cancer cells, could soon become available as a clinical tool to precisely match treatment with the properties of a patient's own tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.