In recent years, new algorithms have been proposed to retrieve maximum available information in synthetic aperture radar (SAR) interferometric stacks with focus on distributed scatterers. The key step in these algorithms is to optimally estimate single-master (SM) wrapped phases for each pixel from all possible interferometric combinations, preserving useful information and filtering noise. In this paper, we propose a new method for SM-phase estimation based on the integer least squares principle. We model the SM-phase estimation problem in a linear form by introducing additional integer ambiguities and use a bootstrap estimator for joint estimation of SM-phases and the integer unknowns. In addition, a full error propagation scheme is introduced in order to evaluate the precision of the final SM-phase estimates. The main advantages of the proposed method are the flexibility to be applied on any (connected) subset of interferograms and the quality description via the provision of a full covariance matrix of the estimates. Results from both synthetic experiments and a case study over the Torfajökull volcano in Iceland demonstrate that the proposed method can efficiently filter noise from wrapped multibaseline interferometric stacks, resulting in doubling the number of detected coherent pixels with respect to conventional persistent scatterer interferometry.
Ground surface dynamics is one of the processes influencing the future of the Wadden Sea area. Vertical land movement, both subsidence and heave, is a direct contributor to changes in the relative sea level. It is defined as the change of height of the Earth's surface with respect to a vertical datum. In the Netherlands, the Normaal Amsterdams Peil (NAP) is the official height datum, but its realisation via reference benchmarks is not time-dependent. Consequently, NAP benchmarks are not optimal for monitoring physical processes such as land subsidence. However, surface subsidence can be regarded as a differential signal: the vertical motion of one location relative to the vertical motion of another location. In this case, the actual geodetic height datum is superfluous.In the present paper, we highlight the processes that cause subsidence, with specific focus on the Wadden Sea area. The focus will be toward anthropogenic causes of subsidence, and how to understand them; how to measure and monitor and use these measurements for better characterisation and forecasting; with some details on the activities in the Wadden Sea that are relevant in this respect. This naturally leads to the identification of knowledge gaps and to the formulation of notions for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.