Introduction The clinical assessment of the myocardial damage caused by anthracyclin (ANT)-therapy is diYcult. Therefore a study was performed to evaluate non-invasive markers of anthracyclin-induced cardiac eVects, with emphasis on course-to-course variation. Methods Eligible for study participation were patients, without known cardiologic abnormalities who did not use cardiotoxic medication (except for ANT-therapy), who had previously completed at least three cycles of anthracyclincontaining chemotherapy (n = 14) and patients who were ANT-naïve and who were scheduled to receive doxorubicin-containing chemotherapy (n = 12). Seven patients in this last group also completed at least three cycles and were available for follow-up assessments; thus a total population of 21 patients (12F/9M) completed at least three courses ANT-chemotherapy. In these patients blood samples and ECG-recordings were taken within 6 months after completion of ANT-therapy. In 12 patients (10F/2M) assessments were also done before, immediately afterwards and at 24 h after each course of ANT. Results and ConclusionsIn the patients who completed chemotherapy, NT-proBNP was 277% (n = 21; 95% CI: 86-661%, P < 0.001) higher compared to healthy volunteers. During the Wrst course NT-proBNP rose 269% (n = 12; 167-409%, P < 0.0001) at 24 h post-administration. The linear corrected QT (QTcL) directly after the Wrst administration of ANT increased by 9.56 ms (n = 12; 3.85-15.27, P < 0.001) and this prolongation was still present at 24 h, 11.48 ms (n = 12; 5.61-17.34, P < 0.0001). Both NTproBNP and QTcL returned to baseline before the start of the next course and a similar pattern was observed during each course. NT-proBNP and QTcL may be useful markers for course-to-course evaluation of anthracyclin-induced cardiotoxicity.
To evaluate the usefulness of neuronal intranuclear inclusions and neuropil inclusions for the pathological assessment of Huntington's disease (HD), their presence in neocortex was assessed by ubiquitin and N-terminal huntingtin immunohistochemistry in a consecutive series of 195 autopsy brains of individuals with a positive or tentative clinical diagnosis of, or at risk for, HD. The findings were correlated with striatal pathology (n = 190), CAG repeat length (n = 85) and original pathological diagnosis (n = 186). The antibodies detected both these inclusions in 181 patients with HD pathology > or = Vonsattel et al's grade I, five patients lacking striatal tissue for review, and two at-risk individuals with grade 0 and grade I HD pathology, respectively. One patient with HD-like pathology and two patients and four at-risk individuals without HD pathology lacked HD inclusions. In the genetically analyzed cases, the inclusions were exclusively and consistently observed in association with repeat expansion [(CAG)(n) > or = 39, n = 81]. Thirteen inclusion-positive cases, including the grade 0 at-risk individual, had a false negative original pathological diagnosis of HD and four had an unjustly questionable diagnosis. A false positive diagnosis was made in the inclusion-negative case with HD-like pathology. These results indicate that immunohistochemical analysis for HD inclusions facilitates the pathological evaluation of HD and enhances its accuracy.
Compared with the antihistaminergic sedative diphenhydramine, alprazolam and pregabalin caused larger SPV reduction, which was correlated with simultaneous improvement of subjective calmness, during a study day in which anxiety was stimulated repeatedly. The different effect profiles of the three drugs are in line with their pharmacological distinctions. These findings corroborate the profiling of CNS effects to demonstrate pharmacological selectivity, and further support SPV as biomarker for anxiolysis involving GABA-ergic neurons. The study also supports the use of prolonged mild threat to demonstrate anxiolytic effects in healthy volunteers.
BackgroundFear-potentiated startle has been suggested as a translational model for evaluating efficacy of anxiolytic compounds in humans. Several known anxiolytic compounds have been tested as well as several putative anxiolytics. Because results of these studies have been equivocal, the aim of the present study was to examine another pharmacological permutation of the human potentiated startle model by comparing two anxiolytic agents to a non-anxiolytic sedative and placebo.MethodsTwenty healthy volunteers participated in a double-blind, placebo-controlled, cross-over study with four sessions in which they received single doses of the anxiolytics alprazolam (1 mg) and pregabalin (200 mg), as well as diphenhydramine (50 mg) as a non-anxiolytic sedative control and placebo. The design included a cued shock condition that presumably evokes fear and an unpredictable shock context condition presumably evoking anxiety.ResultsNone of the treatments reliably reduced either fear- or anxiety-potentiated startle. Alprazolam and diphenhydramine reduced overall baseline startle. Alprazolam was found to only affect contextual anxiety in a statistical significant way after two subjects who failed to show a contextual anxiety effect in the placebo condition were excluded from the analysis. Pregabalin did not significantly affect any of the physiological measures.DiscussionThe negative findings from this study are discussed in terms of methodological differences between designs and in variability of startle both between and within study participants.ConclusionEven though fear-potentiated startle may be used to translate preclinical evidence to human populations, methodological issues still hamper the application of this model to early screening of putative anxiolytic drugs.
AIMAnthracycline-induced cardiotoxicity is (partly) mediated by free radical overload. A randomized study was performed in breast cancer patients to investigate whether free radical scavenger super oxide dismutase (SOD) protects against anthracycline-induced cardiotoxicity as measured by changes in echo, electrocardiography and an array of biomarkers. METHOD AND RESULTSEighty female, chemotherapy-naïve breast cancer patients (median age 49, range 24-67 years) scheduled for four or five courses of adjuvant 3 weekly doxorubicin plus cyclophosphamide (AC) chemotherapy, were randomly assigned to receive 80 mg PC-SOD (human recombinant SOD bound to lecithin) or placebo, administered intravenously (i.v.) immediately prior to each AC course. The primary end point was protection against cardiac damage evaluated using echocardiography, QT assessments and a set of biochemical markers for myocardial function, oxidative stress and inflammation. Assessments were performed before and during each course of chemotherapy, and at 1, 4 and 9 months after completion of the chemotherapy regimen. In all patients cardiac effects such as increases in NT-proBNP concentration and prolongation of the QTc interval were noticed. There were no differences between the PC-SOD and placebo-treated patients in systolic or diastolic cardiac function or for any other of the biomarkers used to assess the cardiac effects of anthracyclines. CONCLUSIONPC-SOD at a dose of 80 mg i.v. is not cardioprotective in patients with breast carcinoma treated with anthracyclines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.