The first three-dimensional structure of a type IIa bacteriocin from lactic acid bacteria is reported. Complete 1 H resonance assignments of leucocin A, a 37 amino acid antimicrobial peptide isolated from the lactic acid bacterium Leuconostoc gelidum UAL187, were determined in 90% trifluoroethanol (TFE)water and in aqueous dodecylphosphocholine (DPC) micelles (1:40 ratio of leucocin A:DPC) using twodimensional NMR techniques (e.g., DQF-COSY, TOCSY, NOESY). Circular dichroism spectra, NMR chemical shift indices, amide hydrogen exchange rates, and long-range nuclear Overhauser effects indicate that leucocin A adopts a reasonably well defined structure in both TFE and DPC micelle environments but exists as a random coil in water or aqueous DMSO. Distance geometry and simulated annealing calculations were employed to generate structures for leucocin A in both lipophilic media. While some differences were noted between the structures calculated for the two different solvent systems, in both, the region encompassing residues 17-31 assumes an essentially identical amphiphilic R-helix conformation. A three-strand antiparallel β-sheet domain (residues 2-16), anchored by the disulfide bridge, is also observed in both media. In TFE, these two regions have a more defined relationship relative to each other, while, in DPC micelles, the C-terminus is folded back onto the R-helix. The implications of these structural features with regard to the antimicrobial mechanism of action and target recognition are discussed. † These investigations were supported by the Natural Sciences and Engineering Research Council of Canada.‡ Coordinates of leucocin A in TFE and DPC micelles have been deposited in the Brookhaven Protein Data Bank (filenames 2leu and 3leu, respectively).
The world of nature provides a never-ending set of fascinating problems for the chemist. Many of the most intriguing problems, however, concern compounds available in only truly minute quantities. One solution is to focus on bioassay-guided separations. In so doing one can isolate compounds with novel structures or unsuspected activities from almost any phylum, including tunicates, sponges, insects, or even the much-studied terrestrial plants, as exemplified in several recent studies in our laboratory involving activities ranging from antiviral and antimicrobial activity to cytotoxicity and immunomodulation. Moreover, newer spectroscopic techniques, especially fast atom bombardment mass spectrometry and tandem mass spectrometry, enhance one's ability to study compounds present in minute quantities, including those of importance to the host organism, such as neuropeptides in insects or marine invertebrates.
The asymmetrical DNA duplex [5'd(AAGGGACTTTCC)].[5'-d(GGAAAGTCCCTT)] has been studied by one- and two-dimensional NMR techniques. The sequence is comprised of the actual 10 base-pair long binding site for the transcription factor NF-kappa B in the enhancer sequence of the long term repeat (LTR) region of HIV and SIV types of retroviruses associated with the AIDS syndrome. Two additional A.T base-pairs are also included on one end for an added interest in the 12-bp duplex sequence with a pseudo dyad-symmetric disposition of the oligopurine and oligopyrimidine segments, as it appears in the HIV-1 genome. Phase-sensitive two-dimensional spectra (NOESY, ROESY, COSY and TOCSY) were obtained at three different temperatures (5, 15 and 25 degrees C) for a complete assignment of the non-exchangeable protons by tracing through sequence specific intra- and internucleotide connectivities. 2D-NOESY spectra were also acquired in aqueous (90% H2O-D2O) solutions, with two different methods of water signal suppression, to assign the exchangeable protons from specific NOE correlations. Adenine H2 protons were assigned by the use of NOE correlations and from T1 relaxation time measurements. The general spectral features and semi-quantitative interproton distance estimates indicate a B-DNA type conformation. However, some distinctly unusual features associated with the nucleotides at and immediately adjacent to both the 5'-and 3'-ends of AAA/TTT and GGG/CCC segments were noted. The complete assignments, and the observed characteristics, will be of significant value in studying the complexes of this transcriptionally active DNA domain with the protein and other rationally designed DNA binding agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.