One significant challenge in the construction of visual detection systems is the acquisition of sufficient labeled data. This paper describes a new technique for training visual detectors which requires only a small quantity of labeled data, and then uses unlabeled data to improve performance over time. Unsupervised improvement is based on the cotraining framework of Blum and Mitchell, in which two disparate classifiers are trained simultaneously. Unlabeled examples which are confidently labeled by one classifier are added, with labels, to the training set of the other classifier. Experiments are presented on the realistic task of automobile detection in roadway surveillance video. In this application, co-training reduces the false positive rate by a factor of 2 to 11 from the classifier trained with labeled data alone.
A simple and computationally efficient scheme for tree-structured vector quantization is presented. Unlike previous methods, its quantization error depends only on the intrinsic dimension of the data distribution, rather than the apparent dimension of the space in which the data happen to lie.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.