Introduction The misdiagnosis of appendicitis and consequent removal of a normal appendix occurs in one in five patients in the UK. On the contrary, in healthcare systems with routine cross-sectional imaging of suspected appendicitis, the negative appendicectomy rate is around 5%. If we could reduce the rate in the UK to similar numbers, would this be cost effective? This study aimed to calculate the financial impact of negative appendicectomy at the Queen Alexandra Hospital and to explore whether a policy of routine imaging of such patients could reduce hospital costs. Materials and methods We performed a retrospective analysis of all appendicectomies over a 1-year period at our institution. Data were extracted on outcomes including appendix histology, operative time and length of stay to calculate the negative appendicectomy rate and to analyse costs. Results A total of 531 patients over 5 years of age had an appendicectomy. The negative appendicectomy rate was 22% (115/531). The additional financial costs of negative appendicectomy to the hospital during this period were £270,861. Universal imaging of all patients with right iliac fossa pain that could result in a 5% negative appendicectomy rate would cost between £67,200 and £165,600 per year but could save £33,896 (magnetic resonance imaging), £105,896 (computed tomography) or £132,296 (ultrasound) depending on imaging modality used. Conclusions Negative appendicectomy is still too frequent and results in additional financial burden to the health service. Routine imaging of patients with suspected appendicitis would not only reduce the negative appendicectomy rate but could lead to cost savings and a better service for our patients.
Disturbances in the microbial ecosystem have been implemented in chronic inflammation, immune evasion and carcinogenesis, with certain microbes associated with the development of specific cancers. In recent times, the gut microbiome has been recognised as a potential novel player in the pathogenesis and treatment of malignant melanoma. It has been shown that the composition of gut microbiota in early‐stage melanoma changes from in situ to invasive and then to metastatic disease. The gut bacterial and fungal profile has also been found to be significantly different in melanoma patients compared to controls. Multiple studies of immune checkpoint inhibitor (ICI) therapies have shown that the commensal microbiota may have an impact on anti‐tumor immunity and therefore ICI response in cancer patients. When it comes to chemotherapy and radiotherapy treatments, studies demonstrate that gut microbiota are invaluable in the repair of radiation and chemotherapy‐induced damage and therapeutic manipulation of gut microbiota can be an effective strategy to deal with side effects. Studies demonstrate the oncogenic and tumor‐suppressive properties of the gut microbiome, which may play a role in the pathogenesis of melanoma. Despite this, investigations into specific interactions are still in its infancy, but starting to gain momentum as more significant and clinically relevant effects are emerging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.