We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.
Ligand exchange is central in the processing of inorganic nanocrystals (NCs) and requires understanding of surface chemistry. Studying sterically stabilized HfO2 and ZrO2 NCs using (1) H solution NMR and IR spectroscopy as well as elemental analysis, this paper demonstrates the reversible exchange of initial oleic acid ligands for octylamine and self-adsorption of oleic acid at NC surfaces. Both processes are incompatible with an X-type binding motif of carboxylic acids as reported for sulfide and selenide NCs. We argue that this behavior stems from the dissociative adsorption of carboxylic acids at the oxide surface. Both proton and carboxylate moieties must be regarded as X-type ligands yielding a combined X2 binding motif that allows for self-adsorption and exchange for L-type ligands.
We analyze the surface chemistry of CuInS 2 nanocrystals synthesized in the presence of amines. Using solution NMR spectroscopy and elemental analysis, we come to the conclusion that as-synthesized CuInS 2 nanocrystals have charge neutral inorganic cores and are stabilized by a layer of tightly bound L-type amines. In situ NMR heating-up experiments show that desorption of amines can be induced by increasing the temperature, which makes the partial exchange of amines for thiols possible. On the other hand, we find that carboxylic acids are unable to bind as L-type ligands to the CuInS 2 surface. In addition, we demonstrate that the use of technical oleylamine in the synthesis of CuInS 2 nanocrystals leads to nonstoichiometric nanocrystals which have, next to oleylamine ligands, also X-type impurities on the surface that can be exchanged for carboxylic acids.
We present a scalable synthesis of a versatile MTX reagent with an azide ligation handle that allows rapid γ-selective conjugation to yield MTX fusion compounds (MFCs) appropriate for MASPIT, a three-hybrid system that enables the identification of mammalian cytosolic proteins that interact with a small molecule of interest. We selected three structurally diverse pharmacologically active compounds (tamoxifen, reversine, and FK506) as model baits. After acetylene functionalization of these baits, MFCs were synthesized via a CuAAC reaction, demonstrating the general applicability of the MTX reagent. In analytical mode, MASPIT was able to give concentration-dependent reporter signals for the established target proteins. Furthermore, we demonstrate that the sensitivity obtained with the new MTX reagent was significantly stronger than that of a previously used non-regiomeric conjugate mixture. Finally, the FK506 MFC was explored in a cellular array screen for targets of FK506. Out of a pilot collection of nearly 2000 full-length human ORF preys, FKBP12, the established target of FK506, emerged as the prey protein that gave the highest increase in luciferase activity. This indicates that our newly developed synthetic strategy for the straightforward generation of MFCs is a promising asset to uncover new intracellular targets using MASPIT cellular array screening.
The critical parameters determining the electrospinning of silica nanofibers starting from tetraethoxysilane sols are reported. By controlling the reaction conditions, the rheological properties of the sol allowed for electrospinning without needing the addition of an organic polymer. This allows the polymer removal step, which is deleterious to the fibers and an economic and ecological inconvenience, to be skipped. The effects on the electrospinning process of the viscosity of the sol, the concentration of ethanol, the degree of crosslinking and the size of the colloidal species were studied in depth with ATR-FTIR, Si-29 NMR, H-1 NMR and DLS. Moreover, to separate the contributions of the different parameters three different set-ups for sol preparation were used. An optimum amount of 9 mol L-1 ethanol for electrospinning was determined. In addition, the optimum degree of crosslinking and size of colloidal particles, approximately 3.5-7 nm, were obtained for stable electrospinning and for producing uniform, beadless nanofibers that were stable in time. The optimum viscosity range is in between 100 and 200 mPa s, which is in line with previous work. Using these optimum conditions, continuous electrospinning was carried out for 3 h, resulting in large flexible silica nanofibrous membranes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.