Density values for the Bouguer reduction of two gravity data sets from Iceland are determined using a new method based on minimization of the roughness of the Bouguer anomaly surface. The fractal dimension of the surface is used as a gauge of the roughness. The analysis shows the size of topographic features supported by crust without isostatic compensation to be 25 to 30 km in southwest Iceland and 9 to 10 km inside the active rifting zone. The densities selected for these areas are 2490 and [Formula: see text], respectively.
The detection of linear anomalies in map data is facilitated by studying the two‐dimensional power spectrum, because the directivity of the energy in the map is preserved in the Fourier transform. The lineaments associated with individual peaks in the spectrum are then separated from the map data by directional filtering and studied independently of other map features. Gravity and magnetic maps from an active rift area in southwestern Iceland are analyzed in this manner. The agreement between the filtered maps is good and they fit the observed tectonic features quite well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.