Climate-smart conservation addresses the vulnerability of biodiversity to climate change impacts but may require transboundary considerations. Here, we adapt and refine 16 biophysical guidelines for climate-smart marine reserves for the transboundary California Bight ecoregion. We link several climate-adaptation strategies (e.g., maintaining connectivity, representing climate refugia, and forecasting effectiveness of protection) by focusing on kelp forests and associated species. We quantify transboundary larval connectivity along ~800 km of coast and find that the number of connections and the average density of larvae dispersing through the network under future climate scenarios could decrease by ~50%, highlighting the need to protect critical steppingstone nodes. We also find that although focal species will generally recover with 30% protection, marine heatwaves could hinder subsequent recovery in the following 50 years, suggesting that protecting climate refugia and expanding the coverage of marine reserves is a priority. Together, these findings provide a first comprehensive framework for integrating climate resilience for networks of marine reserves and highlight the need for a coordinated approach in the California Bight ecoregion.
The main key drivers of vulnerability for marine species are anthropogenic stressors, ranging from pollution and fishing to climate change. The widely documented impacts of fishing activities on marine species, the growing concern about the population status of many marine species, and the increase in per capita consumption of marine products worldwide have led to the development of environmentally responsible fishing standards and initiatives to inform consumers about the health status of the species. In Mexico, fishing is a vital source of jobs and food security for many coastal communities, but the population status of many species of commercial importance has not been evaluated. Management efforts and fisheries certification procedures and standards to achieve the sustainability of many Mexican fisheries are hindered by a lack of biological and fishery data for many species. In this study, a risk assessment methodology for data-limited fisheries, a Productivity, and Susceptibility Analysis was used to estimate the relative vulnerability of marine invertebrates and fishes commercially important in Mexico to fishing. Ninety-eight invertebrates, 66 elasmobranchs, and 367 bony fish were analyzed. The vulnerability among the 531 evaluated species is high for 115 (22%), moderate for 113 (21%), and low for 303 (57%). The most vulnerable species are the Mexican geoduck (Panopea globosa) and the Black Sea Cucumber (Holothuria atra) for invertebrates, the Spiny butterfly ray (Gymnura altavela) among elasmobranches, and the Black-and-yellow rockfish (Sebastes chrysomelas) for bony fishes. This study provides a first screening of the many species potentially affected by fisheries, prioritizes marine species for future research and management efforts, identifies the main data gaps, and sets the baseline for future research efforts and management. Furthermore, the results could improve market-based approaches like eco-labeling initiatives and the Responsible Seafood Consumption Guide, developed by Mexican authorities in collaboration with Comunidad and Biodiversidad (COBI, a civil society organization), to inform consumers about the origin and sustainability of fishery products.
Rights‐based fisheries management (RBFM) seeks to create market incentives to reduce competition, avoid overexploitation, and increase economic efficiency. Particularly for artisanal fisheries, however, assumptions of RBFM may not be met and its use needs to be carefully considered. This study applies an existing tool (SEASALT) to evaluate the strength of RBFM based on attributes of security, exclusivity, fish mortality, scale, responsibility, limitations, and transferability. Results for 17 fisheries in Mexico show a positive (nonsignificant) relationship between the strength of RBFM and stock status, and no effect on prices or landed value. Real‐world fisheries governance systems are much more complex than the simple linkages between attributes implied in SEASALT, but results highlight pre‐existing monitoring and enforcement capacity as essential for successful RBFM. Transitions to RBFM may strengthen this capacity, but likely cannot create it where it does not already exist. Based on our findings, RBFM strategies may benefit from group quotas with limited transferability to avoid negative social outcomes from consolidation or rent capture by intermediaries; this could potentially build on the latent capacity of traditional community associations common in many artisanal fisheries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.