This paper presents a pipeline which uses a multiatlas approach for multiorgan segmentation in whole-body CT images. In order to obtain accurate registrations between the target and the atlas images, we develop an adapted featurebased method which uses organ-specific features. These features are learnt during an offline preprocessing step, and thus, the algorithm still benefits from the speed of feature-based registration methods. These feature sets are then used to obtain pairwise non-rigid transformations using RANSAC followed by a thin-plate spline refinement or NiftyReg. The fusion of the transferred atlas labels is performed using a random forest classifier, and finally, the segmentation is obtained using graph cuts with a Potts model as interaction term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.