BackgroundThe neural transcription factor SOX11 has been described as a prognostic marker in epithelial ovarian cancers (EOC), however its role in individual histological subtypes and tumour grade requires further clarification. Furthermore, methylation-dependent silencing of SOX11 has been reported for B cell lymphomas and indicates that epigenetic drugs may be used to re-express this tumour suppressor, but information on SOX11 promoter methylation in EOC is still lacking.MethodsSOX11 expression and clinicopathological data was compared using χ2 test in a cohort of 154 cases of primary invasive EOC. Kaplan-Meier analysis and the log rank test were applied to evaluate ovarian cancer-specific survival (OCSS) and overall survival (OS) in strata, according to SOX11 expression. Also, the methylation status of the SOX11 promoter was determined by sodium bisulfite sequencing and methylation specific PCR (MSP). Furthermore, the effect of ectopic overexpression of SOX11 on proliferation was studied through [3H]-thymidine incorporation.ResultsSOX11 expression was associated with an improved survival of patients with high grade EOC, although not independent of stage. Further analyses of EOC cell lines showed that SOX11 mRNA and protein were expressed in two of five cell lines, correlating with promoter methylation status. Demethylation was successfully performed using 5'-Aza-2'deoxycytidine (5-Aza-dC) resulting in SOX11 mRNA and protein expression in a previously negative EOC cell line. Furthermore, overexpression of SOX11 in EOC cell lines confirmed the growth regulatory role of SOX11.ConclusionsSOX11 is a functionally associated protein in EOC with prognostic value for high-grade tumours. Re-expression of SOX11 in EOC indicates a potential use of epigenetic drugs to affect cellular growth in SOX11-negative tumours.
Detailed understanding of how Abs of the IgE isotype interact with allergen at the onset of an allergic reaction is of great importance for deciphering mechanisms involved in the development of disease and may aid in the design of hypoallergenic variants. In this study, we have used a set of human monoclonal IgE Abs derived from the repertoires of allergic individuals, specific for the major timothy grass pollen allergen Phl p 1, to gain detailed information on the interaction between Abs and allergen. These allergen-specific IgE are to varying degrees cross-reactive toward both different allergen isoforms and various group 1 allergens originating from other grass species. The usage of human monoclonal IgE, as an alternative to polyclonal preparations or mouse Abs, allowed us to locate several important IgE-binding epitopes on the C-terminal domain of Phl p 1, all clustered to an IgE-binding “hot spot.” By introducing three mutations in the IgE-binding area of the C-terminal domain we were able to significantly reduce its reactivity with serum IgE. In conclusion, our study shows the great potential of using human monoclonal IgE as a tool for studies of the molecular interactions taking place during allergic responses. Furthermore, we present a novel IgE-hyporeactive fragment with the potential to be used as a safer hypoallergenic alternative in specific immunotherapy than the pollen extracts used today.
Chemical sensitization is an adverse immunologic response to chemical substances, inducing hypersensitivity in exposed individuals. Identifying chemical sensitizers is of great importance for chemical, pharmaceutical, and cosmetic industries, in order to prevent the use of sensitizers in consumer products. Historically, chemical sensitizers have been assessed mainly by in vivo methods, however, recently enforced European legislations urge and promote the development of animal-free test methods able to predict chemical sensitizers. Recently, we presented a predictive biomarker signature in the myeloid cell line MUTZ-3, for assessment of skin sensitizers. The identified genomic biomarkers were found to be involved in immunologically relevant pathways, induced by recognition of foreign substances and regulating dendritic cell maturation and cytoprotective mechanisms. We have developed the usage of this biomarker signature into a novel in vitro assay for assessment of chemical sensitizers, called Genomic Allergen Rapid Detection (GARD). The assay is based on chemical stimulation of MUTZ-3 cultures, using the compounds to be assayed as stimulatory agents. The readout of the assay is a transcriptional quantification of the genomic predictors, collectively termed the GARD Prediction Signature (GPS), using a complete genome expression array. Compounds are predicted as either sensitizers or nonsensitizers by a Support Vector Machine model. In this report, we provide a proof of concept for the functionality of the GARD assay by describing the classification of 26 blinded and 11 nonblinded chemicals as sensitizers or nonsensitizers. Based on these classifications, the accuracy, sensitivity, and specificity of the assay were estimated to 89, 89, and 88%, respectively.
Allergen-specific immunotherapy (AIT) induces tolerance and shifts the Th2 response towards a regulatory T-cell profile. The underlying mechanisms are not fully understood, but dendritic cells (DC) play a vital role as key regulators of T-cell responses. DCs interact with allergens via Fc receptors (FcRs) and via certain C-type lectin receptors (CLRs), including CD209/DC-SIGN, CD206/MR and Dectin-2/CLEC6A. In this study, the effect of AIT on the frequencies as well as the FcR and CLR expression profiles of human DC subsets was assessed. PBMC was isolated from peripheral blood from seven allergic donors before and after 8 weeks and 1 year of subcutaneous AIT, as well as from six non-allergic individuals. Cells were stained with antibodies against DC subset-specific markers and a panel of FcRs and CLRs and analyzed by flow cytometry. After 1 year of AIT, the frequency of CD123+ DCs was increased and a larger proportion expressed FcεRI. Furthermore, the expression of CD206 and Dectin-2 was reduced on CD141+ DCs after 1 year of treatment and CD206 as well as Dectin-1 was additionally down regulated in CD1c+ DCs. Interestingly, levels of DNGR1/CLEC9A on CD141+ DCs were increased by AIT, reaching levels similar to cells isolated from non-allergic controls. The modifications in phenotype and occurrence of specific DC subsets observed during AIT suggest an altered capacity of DC subsets to interact with allergens, which can be part of the mechanisms by which AIT induces allergen tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.