Poverty indicators purely based on income statistics do not reflect the full picture of household’s economic well-being. Consumption and wealth are two additional key dimensions that determine the economic opportunities of people or material inequalities. We use non-parametric statistical matching methods to join consumption data from the Household Budget Survey to micro data from the European Union Statistics on Income and Living Conditions. In a second step, micro data from the Household Finance and Consumption Survey are joint to produce a common distribution of income, consumption and wealth variables. A variety of different indicators is then produced based on this joint data set, in particular household saving rates. Care has to be taken when interpreting the indicators, since the statistical matching is based on strong assumptions and a limited number of variables common to all of the three original data sets. We are able to show, however, that the assumptions made are justified by the use of strong proxies as matching variables. Thus, the resulting indicators have the potential to contribute to the analysis of inequality patterns and enhance the possibilities of social, and possibly fiscal, policy impact analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.