The mineralocorticoid aldosterone is one of the major regulators of extracellular volume and blood pressure. It acts by enhancing Na(+) reabsorption across tight epithelia such as renal collecting ducts and colon. In addition, it has been shown that aldosterone stimulates NaCl and volume reabsorption in renal proximal tubules by an unknown mechanism. To test the hypothesis that the application of aldosterone results in greater activity of the apical Na(+)/H(+) exchanger-3 (NHE3), we investigated the effect of aldosterone on amiloride-sensitive, proximal tubular volume reabsorption and proximal tubular NHE3 abundance in adrenalectomized rats. Aldosterone at physiological concentrations (dosage 36 microg/100 g b.w. per day) increased NHE3-dependent proximal tubular volume reabsorption and the abundance of NHE3 in brush borders without changing the total amount of NHE3 in cortical homogenates. These results indicate that renal proximal tubular NHE3 is a target for aldosterone-mediated regulation resulting in increased Na(+) reabsorption and thus extracellular volume and blood pressure. Further studies are required to determine the precise mechanism of action, especially whether the action of aldosterone on proximal tubular function is direct or indirect.
Using the technique of capillary perfusion and simultaneous luminal stop flow microperfusion the reabsorption of bicarbonate and glycodiazine from the papillary collecting duct was evaluated. Starting with equal H14CO3- and 3H-glycodiazine concentrations in the luminal and peritubular perfusates, the decrease in the luminal concentration at 10 and 45 s contact time was measured. In control rats with 25 mmol/l HCO3- in the perfusates the rate of HCO3- reabsorption calculated from the 10 s values was 0.34 nmol cm-2 s-1. In acute metabolic acidosis, the rate of bicarbonate reabsorption was 2,3 times higher. In metabolic alkalosis, the rate of bicarbonate absorption dropped to 13% of the control values. Also the 45 s values of acidotic and alkalotic animals differed significantly from each other. With 25 mmol/l glycodiazine in both perfusates the rate of buffer reabsorption as calculated from the 10 s values was 0.76 nmol cm-2 s-1 in control rats and did not deviate significantly from this value in acidotic and alkalotic animals. In control rats the bicarbonate reabsorption in % was the same, no matter whether both luminal and capillary perfusate contained 25 mmol/l bicarbonate or 10 mmol/l. In acidotic rats the rate of HCO3- reabsorption did not change significantly if all Na+ in the perfusates was replaced by choline (0.88 versus 0.79 nmol cm-2 s-1 at 25 mmol/l HCO3-). When in acidotic rats. 0.1 mmol/l acetazolamide or 1 mmol/l SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid) was added to both perfusates the rate of HCO3- reabsorption dropped by 75 and 58%, respectively. A potassium deficient diet for one week and DOCa administration had no influence on the bicarbonate reabsorption of rats which were on standard diet. The data indicate that (1) the buffer reabsorption from the papillary collecting duct is rather due to H+ ion secretion than to buffer anion reabsorption. (2) The adaptation to metabolic acidosis and alkalosis is specific for bicarbonate and not seen with glycodiazine. (3) Within the concentration range tested the HCO3- reabsorption rises linearly with the HCO3- concentration. (4) The HCO3- reabsorption in the papillary collecting duct is Na+-independent, it can be inhibited by acetazolamide and SITS, but is not influenced by K+-deficient diet plus DOCA.
Using the stop flow microperfusion technique with simultaneous capillary perfusion the secretory rate of H+ ions in the proximal tubule was evaluated by measuring the level flow reabsorption as well as the static head concentration difference of 3H labeled glycodiazine. At ambient glycodiazine concentration of 21 mmol/l the level flow reabsorption is in the same range as that of bicarbonate. In the early proximal loops the reabsorption is 20% greater than in the late proximal loops. The carbonic anhydrase inhibitors acetazolamide and 3,4-methylene-dioxyphenyl-sulfonamide (both 10(-4) M) as well as furosemide (10 (-3) M) inhibit the glycodiazine reabsorption 43%, 27% and 22% respectively. Thiocyanate (2-10(-2) M), however, exerted only an insignificant inhibition (12%). When Na+ in the ambient perfusion solutions was replaced by Li+ or choline+ the glycodiazine transport was strongly reduced. Ouabain (5-10(-2) M) inhibited too, but amiloride (10(-3) M) had no effect on glycodiazine transport. The glycodiazine transport was 28% reduced in metabolic alkalosis and to a smaller although significant extent (17%) in metabolic acidosis; it was unchanged in chronic hypercapnia. In chronic K+ depletion the glycodiazine reabsorption was accelerated by 12% only in the early proximal loops. Chronic parathyroidectomy as well as acute substitution with parathyroid hormone had no effect on the glycodiazine absorption. The main conclusions are: Proximal H+ transport proceeds with suitable buffers. Although independent of HCO3- and carbonic anhydrase, it could be partially inhibited by CA inhibitors. H+ transport is supposed to proceed as countertransport with Na+ ions. In chronic alkalosis the H+ transport is reduced.
Using the stop-flow peritubular capillary microperfusion method contraluminal transport of corticosteroids was investigated (a) by determining the inhibitory potency (apparent Ki values) of these compounds against p-aminohippurate (PAH), dicarboxylate (succinate) and sulphate transport and (b) by measuring the transport rate of radiolabelled corticosteroids and its inhibition by probenecid. Progesterone did not inhibit contraluminal PAH influx but its 17 alpha- and 6 beta-hydroxy derivatives inhibited with an app. Ki of 0.36 mmol/l. Introduction of an OH group in position 21 of progesterone, to yield 11-deoxycorticosterone, augments the inhibitory potency considerably (app. Ki, PAH of 0.07 mmol/l). Acetylation of the OH-group in position 21 of 11-deoxycorticosterone, introduction of an additional hydroxy group in position 17 alpha to yield 11-deoxycortisol or in position 11 to yield corticosterone brings the app. Ki, PAH back again into the range of 0.2-0.4 mmol/l. Acetylation of corticosterone or introduction of a third OH group to yield cortisol does not change the inhibitory potency, but, omission of the 21-OH group or addition of an OH group in the 6 beta position reduces or abolishes it. Cortisol and its derivatives prednisolone, dexamethasone and cortisone exert similar inhibitory potencies (app. Ki, PAH 0.12-0.27 mmol/l). But again, omission of the 21-OH group in cortisone or addition of a 6 beta-OH group reduces or even abolishes the inhibitory potency against PAH transport. The interaction of corticosterone was not changed when 11 beta, 18-epoxy ring (aldosterone) was formed. On the other hand, the interaction was considerably augmented if the 11-hydroxy group was changed to an oxo group in 11-dehydrocorticosterone (app. Ki, PAH 0.02 mmol/l). When the A ring of corticosterone is saturated and reduced to 3 alpha, 11 beta-tetrahydrocorticosterone the inhibitory potency is not changed very much. But if more than four OH or oxo groups are on the pregnane skeleton or if the OH in position 21 is missing, the inhibitory potency decreases drastically (app. Ki, PAH 0.7-1.7 mmol/l). Introduction of a 21-ester sulphate into corticosterone, cortisol and cortisone does not change app. Ki, PAH very much. Glucuronidation, however, reduces it (app. Ki, PAH approximately 1.2 mmol/l). None of the tested corticosteroids interacts, in concentrations applicable, with dicarboxylate transport and only the sulphate esters interact with sulphate transport. Radiolabelled cortisol, D-aldosterone, 11-dehydrocorticosterone, and corticosterone are rapidly transported into proximal tubular cells. With the latter three compounds no sign of saturation and no transport inhibition with probenecid could be seen.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.