In the recent past, wireless sensor networks have found their way into a wide variety of applications and systems with vastly varying requirements and characteristics. As a consequence, it is becoming increasingly difficult to discuss typical requirements regarding hardware issues and software support. This is particularly problematic in a multidisciplinary research area such as wireless sensor networks, where close collaboration between users, application domain experts, hardware designers, and software developers is needed to implement efficient systems. In this paper we discuss the consequences of this fact with regard to the design space of wireless sensor networks by considering its various dimensions. We justify our view by demonstrating that specific existing applications occupy different points in the design space.
Ubiquitous computing is associated with a vision of everything being connected to everything. However, for successful applications to emerge, it will not be the quantity but the quality and usefulness of connections that will matter. Our concern is how qualitative relations and more selective connections can be established between smart artefacts, and how users can retain control over artefact interconnection. We propose context proximity for selective artefact communication, using the context of artefacts for matchmaking. We further suggest to empower users with simple but effective means to impose the same context on a number of artefacts. To prove our point we have implemented Smart-Its Friends, small embedded devices that become connected when a user holds them together and shakes them.
Creating networks of "smart things" found in the physical world (e.g., with RFID, wireless sensor and actuator networks, embedded devices) on a large scale has become the goal of a variety of recent research activities. Rather than exposing real-world data and functionality through vertical system designs, we propose to make them an integral part of the Web. As a result, smart things become easier to build upon. In such an architecture, popular Web technologies (e.g., HTML, JavaScript, Ajax, PHP, Ruby) can be used to build applications involving smart things, and users can leverage well-known Web mechanisms (e.g., browsing, searching, bookmarking, caching, linking) to interact with and share these devices. In this chapter, we describe the Web of Things (WoT) architecture and best practices based on the RESTful principles that have already contributed to the popular success, scalability, and evolvability of the Web. We discuss several prototypes using these principles, which connect environmental sensor nodes, energy monitoring systems, and RFID-tagged objects to the Web. We also show how Web-enabled smart things can be used in lightweight ad-hoc applications, called "physical Mashups", and discuss some of the remaining challenges towards the global World Wide Web of Things.
Reinhard Schwarz received a diploma in computer science from the University of Kaiserslautern, Germany, in 1990. Since then, he is working as a research assistant at the computer science department. His research interests include debugging and monitoring of distributed systems, runtime support for objectoriented distributed programming, and distributed algorithms.veyed. The issue of observing distributed computations in a causally consistent way and the basic problems of detecting global predicates are discussed. To illustrate the major difficulties, some typical monitoring and debugging approaches are assessed, and it is demonstrated how their feasibility is severely limited by the fundamental problem to master the complexity of causal relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.