Fucosylated chondroitin sulfate (FucCS) is a unique marine glycosaminoglycan that exhibits diverse biological functions including antiviral and anticoagulant activity. In previous work, the FucCS derived from Pentacta pygmaea (PpFucCS) showed moderate anticoagulant effect but high inhibitory activity against the Wuhan strain of severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this study, we perform free-radical depolymerization of PpFucCS by the copper-based Fenton method to generate low molecular weight (MW) oligosaccharides. PpFucCS oligosaccharides were structurally analyzed by 1H nuclear magnetic resonance spectroscopy and used to conduct structure–activity relationship studies regarding their effects against SARS-CoV-2 and clotting. Anticoagulant properties were measured by activated partial thromboplastin time, protease (factors Xa and IIa) inhibition by serine protease inhibitors [antithrombin (AT) and heparin cofactor II (HCII)], and competitive surface plasmon resonance (SPR) assay using AT, HCII and IIa. Anti-SARS-CoV-2 properties were measured by concentration-response inhibitory curves of HEK-293 T-hACE2 cells infected with a baculovirus pseudotyped SARS-CoV-2 Delta variant spike (S)-protein and competitive SPR assays using multiple S-proteins [Wuhan, N501Y (Alpha), K417T/E484K/N501Y (Gamma), L542R (Delta) and Omicron (BA.2 subvariant)]. Cytotoxicity of native PpFucCS and oligosaccharides was also assessed. The PpFucCS-derived oligosaccharide fraction of the highest MW showed great anti-SARS-CoV-2 Delta activity and reduced anticoagulant properties. Results have indicated no cytotoxicity and MW-dependency on both anti-SARS-CoV-2 and anticoagulant effects of PpFucCS as both actions were reduced accordingly to the MW decrease of PpFucCS. Our results demonstrate that the high MW structures of PpFucCS is a key structural element to achieve the maximal anti-SARS-CoV-2 and anticoagulant effects.
Steric exclusion chromatography (SXC) is a promising purification method for biological macromolecules such as the Orf virus (ORFV) vector. The method’s principle is closely related to conventional polyethylene glycol (PEG) precipitation, repeatedly implementing membranes as porous chromatographic media. In the past decade, several purification tasks with SXC showed exceptionally high yields and a high impurity removal. However, the effect of varying process parameters, on the precipitation success and its limitations to SXC, is not yet well understood. For this reason, the precipitation behavior and SXC adaptation for ORFV were investigated for the PEG/ORFV contact time, the membranes pore size, and the type and concentration of ions. All three parameters influenced the ORFV recoveries significantly. A small pore size and a long contact time induced filtration effects and inhibited a full virus recovery. The application of salts had complex concentration-dependent effects on precipitation and SXC yields, and ranged from a complete prevention of precipitation in the presence of kosmotropic substances to increased efficiencies with Mg2+ ions. The latter finding might be useful to reduce PEG concentrations while maintaining high yields. With this knowledge, we hope to clarify several limitations of SXC operations and improve the tool-set for a successful process adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.