Human colon cancer harbors a small subfraction of tumor-initiating cells (TICs) that is assumed to be a functionally homogeneous stem-cell-like population driving tumor maintenance and metastasis formation. We found unexpected cellular heterogeneity within the TIC compartment, which contains three types of TICs. Extensively self-renewing long-term TICs (LT-TICs) maintained tumor formation in serial xenotransplants. Tumor transient amplifying cells (T-TACs) with limited or no self-renewal capacity contributed to tumor formation only in primary mice. Rare delayed contributing TICs (DC-TICs) were exclusively active in secondary or tertiary mice. Bone marrow was identified as an important reservoir of LT-TICs. Metastasis formation was almost exclusively driven by self-renewing LT-TICs. Our results demonstrate that tumor initiation, self-renewal, and metastasis formation are limited to particular subpopulations of TICs in primary human colon cancer. We identify LT-TICs as a quantifiable target for therapies aimed toward eradication of self-renewing tumorigenic and metastatic colon cancer cells.
The Dnmt2 enzyme utilizes the catalytic mechanism of eukaryotic DNA methyltransferases to methylate several tRNAs at cytosine 38. Dnmt2 mutant mice, flies, and plants were reported to be viable and fertile, and the biological function of Dnmt2 has remained elusive. Here, we show that endochondral ossification is delayed in newborn Dnmt2-deficient mice, which is accompanied by a reduction of the haematopoietic stem and progenitor cell population and a cell-autonomous defect in their differentiation. RNA bisulfite sequencing revealed that Dnmt2 methylates C38 of tRNA AspGTC, GlyGCC, and ValAAC, thus preventing tRNA fragmentation. Proteomic analyses from primary bone marrow cells uncovered systematic differences in protein expression that are due to specific codon mistranslation by tRNAs lacking Dnmt2-dependent methylation. Our observations demonstrate that Dnmt2 plays an important role in haematopoiesis and define a novel function of C38 tRNA methylation in the discrimination of near-cognate codons, thereby ensuring accurate polypeptide synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.