Lattice simulations along with studies in continuum QCD indicate that non-perturbative quantum fluctuations lead to an infrared regularisation of the gluon propagator in covariant gauges in the form of an effective mass-like behaviour. In the present work we propose an analytic understanding of this phenomenon in terms of gluon condensation through a dynamical version of the Higgs mechanism, leading to the emergence of color condensates. Within the functional renormalisation group approach we compute the effective potential of covariantly constant field strengths, whose non-trivial minimum is related to the color condensates. In the physical case of an SU (3) gauge group this is an octet condensate. The value of the gluon mass obtained through this procedure compares very well to lattice results and the mass gap arising from alternative dynamical scenarios.
We derive renormalised finite functional flow equations for quantum field theories in real and imaginary time that incorporate scale transformations of the renormalisation conditions, hence implementing a flowing renormalisation. The flows are manifestly finite in general non-perturbative truncation schemes also for regularisation schemes that do not implement an infrared suppression of the loops in the flow. Specifically, this formulation includes finite functional flows for the effective action with a spectral Callan-Symanzik cutoff, and therefore gives access to Lorentz invariant spectral flows. The functional setup is fully non-perturbative and allows for the spectral treatment of general theories. In particular, this includes theories that do not admit a perturbative renormalisation such as asymptotically safe theories. Finally, the application of the Lorentz invariant spectral functional renormalisation group is briefly discussed for theories ranging from real scalar and Yukawa theories to gauge theories and quantum gravity.
Lattice simulations along with studies in continuum QCD indicate that non-perturbative quantum fluctuations lead to an infrared regularisation of the gluon propagator in covariant gauges in the form of an effective mass-like behaviour. In the present work we propose an analytic understanding of this phenomenon in terms of gluon condensation through a dynamical version of the Higgs mechanism, leading to the emergence of color condensates. Within the functional renormalisation group approach we compute the effective potential of covariantly constant field strengths, whose non-trivial minimum is related to the color condensates. In the physical case of an $SU(3)$ gauge group this is an octet condensate. The value of the gluon mass obtained through this procedure compares very well to lattice results and the mass gap arising from alternative dynamical scenarios.
We apply the Local Discontinuous Galerkin discretisation to flow equations of the O(N)-model in the Local Potential Approximation. The improved stability is directly observed by solving the flow equation for various N and space-time dimensions d. A particular focus of this work is the numerical discretisation and its implementation. The code is publicly available, and is explained in detail here. It is realised as a module within the high performance PDE framework DUNE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.