Using a three-hybrid strategy, we have identified a novel cell surface molecule which interacts with the Src homology 2 (SH2) domains of SH2 domain-containing protein tyrosine phosphatase 1 (SHP-1), termed "immune receptor expressed on myeloid cells 1" (IREM-1). The full-length cDNA coding for a polypeptide of 290 amino acids presents an extracellular single V-type Ig domain, a transmembrane region and a cytoplasmic tail with five tyrosine residues, two of which are in the context of an immunoreceptor tyrosine-based inhibitory motif. Moreover, cDNA encoding for three other splicing forms of IREM-1, named IREM-1 splice variant (Sv)1, Sv2 and Sv3 were cloned by reverse transcription (RT)-PCR. The gene encoding for IREM-1 contains nine exons, is located on human chromosome 17 (17q25.1) and is homologous to previously identified molecules termed CMRF-35 and IRp60. RT-PCR, northern blot and FACS analysis with specific monoclonal antibodies indicated that IREM-1 is expressed on monocytes, granulocytes, and myeloid leukemia cell lines. Western blot analysis confirmed the recruitment of SHP-1 to IREM-1 and demonstrated that phosphotyrosine residue 205 is the main docking site for this interaction. Finally, crosslinking of IREM-1 results in the inhibition of FcRe-induced activation. Our results indicate that IREM-1 is a novel inhibitory receptor of the Ig superfamily in myeloid cells.
The inhibitory receptor Ig-like transcript (ILT)2 (leukocyte Ig-like receptor or CD85j) is a type I transmembrane protein expressed by different leukocyte lineages. The extracellular region of ILT2 binds HLA class I molecules, and its cytoplasmic domain displays four immunoreceptor tyrosine-based inhibition motifs. Upon tyrosine phosphorylation ILT2 recruits the Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) that is involved in negative signaling. To address the structural basis of ILT2-mediated inhibitory signaling, deletion and single tyrosine mutants were generated and transfected in the COS-7 and rat basophilic leukemia cell lines; their abilities to bind SHP-1 and to inhibit FcεR-induced serotonin release in rat basophilic leukemia cells were studied. Both biochemical and functional analyses revealed tyrosines 644 (SIYATL) and 614 (VTYAQL) as the SHP-1 docking sites required for ILT2 inhibitory function. Substitution of tyrosine 562 (VTYAEV) did not alter receptor function. By contrast, mutation of tyrosine 533 (NLYAAV) interfered with ILT2 tyrosine phosphorylation and the subsequent SHP-1 recruitment, thus supporting a regulatory role for this motif.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.