The phytopathogenic fungus Fusarium mangiferae belongs to the Fusarium fujikuroi species complex (FFSC). Members of this group cause a wide spectrum of devastating diseases on diverse agricultural crops. F. mangiferae is the causal agent of the mango malformation disease (MMD) and as such detrimental for agriculture in the southern hemisphere. During plant infection, the fungus produces a plethora of bioactive secondary metabolites (SMs), which most often lead to severe adverse defects on plants health. Changes in chromatin structure achieved by posttranslational modifications (PTM) of histones play a key role in regulation of fungal SM biosynthesis. Posttranslational tri-methylation of histone 3 lysine 9 (H3K9me3) is considered a hallmark of heterochromatin and established by the SET-domain protein Kmt1. Here, we show that FmKmt1 is involved in H3K9me3 in F. mangiferae. Loss of FmKmt1 only slightly though significantly affected fungal hyphal growth and stress response and is required for wild type-like conidiation. While FmKmt1 is largely dispensable for the biosynthesis of most known SMs, removal of FmKMT1 resulted in an almost complete loss of fusapyrone and deoxyfusapyrone, γ-pyrones previously only known from Fusarium semitectum. Here, we identified the polyketide synthase (PKS) FmPKS40 to be involved in fusapyrone biosynthesis, delineate putative cluster borders by co-expression studies and provide insights into its regulation.
Claviceps purpurea is an ergot fungus known for its neurotropic alkaloids, which have been identified as the main cause of ergotism, a livestock and human disease triggered by ergot consumption. Tetrahydroxanthone dimers, the so-called ergopigments, presumably also contribute to this toxic effect. Overexpression of the cluster-specific transcription factor responsible for the formation of these pigments in C. purpurea led to the isolation of three new metabolites (8−10). The new pigments were characterized utilizing HRMS, NMR techniques, and CD spectroscopy and shown to be xanthone dimers. Secalonic acid A and its 2,4′-and 4,4′-linked isomers were also isolated, and their absolute configuration was investigated. The contribution of secalonic acid A, its isomers, and new metabolites to the toxicity of C. purpurea was investigated in HepG2 and CCF-STTG1 cells. Along with cytotoxic properties, secalonic acid A was found to inhibit topoisomerase I and II activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.