Anhydrous nanoscopic CuF is synthesized from alkoxides Cu(OR) (R=Me, tBu) by their reaction either in pure liquid HF at -70 °C, or under solvothermal conditions at 150 °C using excess HF and THF as solvent. Depending on the synthesis method, nanoparticles of sizes between 10 and 100 nm are obtained. The compound is highly hygroscopic and forms different hydrolysis products under moist air, namely CuF ⋅2 H O, Cu (OH)F , and Cu(OH)F, of which only the latter is stable at room temperature. CuF exhibits an electrochemical plateau at a potential of ≈2.7 V when cycled versus Li in half cell Li-ion batteries, which is attributed to a non-reversible conversion mechanism. The cell capacity in the first cycle depends on the particle size, being 468 mAh g for ≈8 nm crystallite diameter, and 353 mAh g for ≈12 nm crystallite diameter, referred to CuF . However, such a high capacity cannot be sustained for several cycles and the capacity rapidly fades out. The cell voltage decreases to ≈2.0 V for CuF ⋅2 H O, Cu (OH)F , and Cu(OH)F. As all the compounds studied in this work show irreversible conversion reactions, it can be concluded that copper-based fluorides are unsuitable for Li-ion battery applications.
Anhydrous CuF2 nanoparticles are synthesized straight from copper(II) alkoxides and non‐aqueous hydrogen fluoride, either directly in liquid HF or under solvothermal conditions, along with well‐defined copper(II) hydroxide fluorides. These nanoparticles are used as new cathode conversion materials, allowing the construction of high capacity primary lithium ion batteries. More information can be found in the Full Paper by E. Kemnitz et al. on page 7177.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.