Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.psychology | behavior | comparative methods | inhibitory control | executive function S ince Darwin, understanding the evolution of cognition has been widely regarded as one of the greatest challenges for evolutionary research (1). Although researchers have identified surprising cognitive flexibility in a range of species (2-40) and potentially derived features of human psychology (41-61), we know much less about the major forces shaping cognitive evolution (62-71). With the notable exception of Bitterman's landmark studies conducted several decades ago (63, 72-74), most research comparing cognition across species has been limited to small taxonomic samples (70, 75). With limited comparable experimental data on how cognition varies across species, previous research has largely relied on proxies for cognition (e.g., brain size) or metaanalyses when testing hypotheses about cognitive evolution (76-92). The lack of cognitive data collected with similar methods across large samples of species precludes meaningful species comparisons that can reveal the major forces shaping cognitive evolution across species, including humans (48,70,89,(93)(94)(95)(96)(97)(98). SignificanceAlthough scientists have identified surprising cognitive flexibility in animals and potentially unique features of human psychology, we know less about the selective forces that favor cognitive evolution, or the proximate biological mechanisms underlying this process. We tested 36 species in two problemsolving tasks measuring self-control and evaluated the leading hypotheses regarding how ...
One crucial element for the evolution of cooperation may be the sensitivity to others' efforts and payoffs compared with one's own costs and gains. Inequity aversion is thought to be the driving force behind unselfish motivated punishment in humans constituting a powerful device for the enforcement of cooperation. Recent research indicates that non-human primates refuse to participate in cooperative problem-solving tasks if they witness a conspecific obtaining a more attractive reward for the same effort. However, little is known about non-primate species, although inequity aversion may also be expected in other cooperative species. Here, we investigated whether domestic dogs show sensitivity toward the inequity of rewards received for giving the paw to an experimenter on command in pairs of dogs. We found differences in dogs tested without food reward in the presence of a rewarded partner compared with both a baseline condition (both partners rewarded) and an asocial control situation (no reward, no partner), indicating that the presence of a rewarded partner matters. Furthermore, we showed that it was not the presence of the second dog but the fact that the partner received the food that was responsible for the change in the subjects' behavior. In contrast to primate studies, dogs did not react to differences in the quality of food or effort. Our results suggest that species other than primates show at least a primitive version of inequity aversion, which may be a precursor of a more sophisticated sensitivity to efforts and payoffs of joint interactions.cooperation ͉ refusal of unequal pay ͉ Canis familiaris
BackgroundThe comparison of human related communication skills of socialized canids may help to understand the evolution and the epigenesis of gesture comprehension in humans. To reconcile previously contradicting views on the origin of dogs' outstanding performance in utilizing human gestures, we suggest that dog-wolf differences should be studied in a more complex way.Methodology/Principal FindingsWe present data both on the performance and the behaviour of dogs and wolves of different ages in a two-way object choice test. Characteristic behavioural differences showed that for wolves it took longer to establish eye contact with the pointing experimenter, they struggled more with the handler, and pups also bit her more before focusing on the human's signal. The performance of similarly hand-reared 8-week-old dogs and wolves did not differ in utilizing the simpler proximal momentary pointing. However, when tested with the distal momentary pointing, 4-month-old pet dogs outperformed the same aged hand reared wolves. Thus early and intensive socialisation does not diminish differences between young dogs and wolves in behaviour and performance. Socialised adult wolves performed similarly well as dogs in this task without pretraining. The success of adult wolves was accompanied with increased willingness to cooperate.Conclusion/SignificanceThus, we provide evidence for the first time that socialised adult wolves are as successful in relying on distal momentary pointing as adult pet dogs. However, the delayed emergence of utilising human distal momentary pointing in wolves shows that these wild canines react to a lesser degree to intensive socialisation in contrast to dogs, which are able to control agonistic behaviours and inhibition of actions in a food related task early in development. We suggest a “synergistic” hypothesis, claiming that positive feedback processes (both evolutionary and epigenetic) have increased the readiness of dogs to attend to humans, providing the basis for dog-human communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.